论文标题
SN4+前体从DMSO溶液中启用了12.4%的高效Kesterite太阳能电池,开路电压不足低于0.30 V
Sn4+ Precursor Enables 12.4% Efficient Kesterite Solar Cell from DMSO Solution with Open Circuit Voltage Deficit Below 0.30 V
论文作者
论文摘要
限制因子可防止Kesterite(CZTSSE)薄膜太阳能电池性能进一步改善,这是大型的开路电压缺陷(VOC,DEF)问题,对于当前的世界记录设备的效率为12.6%,它的效率为0.345V。在这项工作中,SNCL4和SNCL2_2H2O分别用作研究二甲基亚氧化二甲基磺胺(DMSO)溶液处理的CZTSSE太阳能电池的VOC,DEF问题。锡化合物与硫库和DMSO的不同络合物导致从溶液到吸收材料的不同反应途径,从而在光伏性能中急剧差异。 SN2+与TU的协调导致前体膜中SNS和ZnS和Cu2的形成,该膜首先转换为Selenides,然后融合到CZTSSE,从而导致薄膜质量和设备性能差。从这部电影中获得的最高效率为8.84%,VOC为0.391V。 SN4+与DMSO的配位有助于前体膜中的Kesterite CZTS相的直接形成,该膜在硒化过程中定向转换为CZTSSE,从而导致组成均匀的吸收剂和高设备性能。从SN4+溶液处理的吸收器中实现了具有活性面积效率为12.2%和VOC的设备,DEF为0.344 V。此外,CZTSSE/CDS杂结热处理(JHT)显着改善了SN4+设备性能,但对SN2+设备的负面影响略有负面影响。从SN4+溶液中实现了总面积效率为12.4%(效率为13.6%)和低VOC,DEF为0.297 V的冠军CZTSSE太阳能电池。我们的结果表明,由SN4+前体启用了预制的均匀乳酸相位,这是实现高效的Kesterite吸收材料的关键。这里实现的最低VOC-DEF和高效率为Kesterite太阳能电池的未来带来了新的启示。
The limiting factor preventing kesterite (CZTSSe) thin film solar cell performance further improvement is the large open-circuit voltage deficit (Voc,def) issue, which is 0.345V for the current world record device with an efficiency of 12.6%. In this work, SnCl4 and SnCl2_2H2O are respectively used as tin precursor to investigate the Voc,def issue of dimethyl sulfoxide (DMSO) solution processed CZTSSe solar cells. Different complexations of tin compounds with thiourea and DMSO lead to different reaction pathways from solution to absorber material and thus dramatic difference in photovoltaic performance. The coordination of Sn2+ with Tu leads to the formation of SnS and ZnS and Cu2S in the precursor film, which converted to selenides first and then fused to CZTSSe, resulting in poor film quality and device performance. The highest efficiency obtained from this film is 8.84% with a Voc,def of 0.391V. The coordination of Sn4+ with DMSO facilitates direct formation ofkesterite CZTS phase in the precursor film which directed converted to CZTSSe during selenization, resulting in compositional uniform absorber and high device performance. A device with active area efficiency 12.2% and a Voc,def of 0.344 V was achieved from Sn4+ solution processed absorber. Furthermore, CZTSSe/CdS heterojunction heat treatment (JHT) significantly improved Sn4+ device performance but had slightly negative effect on Sn2+ device. A champion CZTSSe solar cell with a total area efficiency of 12.4% (active are efficiency 13.6%) and low Voc,def of 0.297 V was achieved from Sn4+ solution. Our results demonstrate the preformed uniform kesterite phase enabled by Sn4+ precursor is the key in achieving highly efficient kesterite absorber material. The lowest Voc-def and high efficiency achieved here shines new light on the future of kesterite solar cell.