论文标题
具有平行多尺度空间池的卷积神经网络,以检测SAR图像的时间变化
A Convolutional Neural Network with Parallel Multi-Scale Spatial Pooling to Detect Temporal Changes in SAR Images
论文作者
论文摘要
在合成的孔径雷达(SAR)图像变化检测中,利用不断变化的信息从噪音差异图像受到斑点非常具有挑战性。在本文中,我们提出了一个多尺度空间池(MSSP)网络,以利用噪声差异图像的更改信息。与传统的卷积网络不同,只有单级合并内核,在提议的方法中,多尺度的合并内核在卷积网络中配备了卷积网络,以从差异图像中利用有关变化区域的空间上下文信息。此外,为了验证所提出的方法的概括,我们将提出的方法应用于跨数据集SAR图像更改检测,其中MSSP网络(MSSP-NET)在数据集中训练,然后应用于未知的测试数据集。我们将提出的方法与其他最新方法进行了比较,并且在Bitemoral SAR图像的四个具有挑战性的数据集上进行了比较。实验结果表明,我们提出的方法在YR-A和YR-B数据集上使用S-PCA-NET获得了可比的结果,并且胜过其他最新方法,尤其是在Sendai-A和Sendai-B数据集上具有更复杂的场景。更重要的是,MSSP-NET比S-PCA-NET和卷积神经网络(CNN)更有效,在培训和测试阶段的执行时间更少。
In synthetic aperture radar (SAR) image change detection, it is quite challenging to exploit the changing information from the noisy difference image subject to the speckle. In this paper, we propose a multi-scale spatial pooling (MSSP) network to exploit the changed information from the noisy difference image. Being different from the traditional convolutional network with only mono-scale pooling kernels, in the proposed method, multi-scale pooling kernels are equipped in a convolutional network to exploit the spatial context information on changed regions from the difference image. Furthermore, to verify the generalization of the proposed method, we apply our proposed method to the cross-dataset bitemporal SAR image change detection, where the MSSP network (MSSP-Net) is trained on a dataset and then applied to an unknown testing dataset. We compare the proposed method with other state-of-arts and the comparisons are performed on four challenging datasets of bitemporal SAR images. Experimental results demonstrate that our proposed method obtains comparable results with S-PCA-Net on YR-A and YR-B dataset and outperforms other state-of-art methods, especially on the Sendai-A and Sendai-B datasets with more complex scenes. More important, MSSP-Net is more efficient than S-PCA-Net and convolutional neural networks (CNN) with less executing time in both training and testing phases.