论文标题

rényi熵不平等的逆转在原木concavity下

Reversals of Rényi Entropy Inequalities under Log-Concavity

论文作者

Melbourne, James, Tkocz, Tomasz

论文摘要

我们建立了与Bobkov和Madiman有关的Rényi熵比较的离散类似物。对于整数上的对数符号变量,最小熵在通常的香农熵的日志e内。此外,我们研究了Madiman和Kontoyannis研究的熵Rogers-Shephard不平等,并在连续和离散案例中为某些参数建立了敏锐的Rényi版本

We establish a discrete analog of the Rényi entropy comparison due to Bobkov and Madiman. For log-concave variables on the integers, the min entropy is within log e of the usual Shannon entropy. Additionally we investigate the entropic Rogers-Shephard inequality studied by Madiman and Kontoyannis, and establish a sharp Rényi version for certain parameters in both the continuous and discrete cases

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源