论文标题
rényi熵不平等的逆转在原木concavity下
Reversals of Rényi Entropy Inequalities under Log-Concavity
论文作者
论文摘要
我们建立了与Bobkov和Madiman有关的Rényi熵比较的离散类似物。对于整数上的对数符号变量,最小熵在通常的香农熵的日志e内。此外,我们研究了Madiman和Kontoyannis研究的熵Rogers-Shephard不平等,并在连续和离散案例中为某些参数建立了敏锐的Rényi版本
We establish a discrete analog of the Rényi entropy comparison due to Bobkov and Madiman. For log-concave variables on the integers, the min entropy is within log e of the usual Shannon entropy. Additionally we investigate the entropic Rogers-Shephard inequality studied by Madiman and Kontoyannis, and establish a sharp Rényi version for certain parameters in both the continuous and discrete cases