论文标题
在非线性模型降低中估算涡质粘度封闭的正向灵敏度方法
Forward sensitivity approach for estimating eddy viscosity closures in nonlinear model reduction
论文作者
论文摘要
在本文中,我们提出了一种使用正向灵敏度方法(FSM)来估算涡流粘度的变分方法,以在非线性还原订购模型中进行封闭模型。 FSM是一种数据同化技术,它将模型的预测与嘈杂的观测值融合在一起,以纠正初始状态和/或模型参数。我们将这种方法应用于基于投影的一维粘性汉堡方程的基于投影的降低订单模型(ROM),并具有定义移动冲击的方波,以及二维涡度传输方程式,从而使Kraichnan湍流的衰减制定。我们研究了通过不同测量构型的涡流粘度近似最佳值的方法的能力。具体而言,我们表明我们的方法可以通过全场或稀疏的嘈杂测量值充分吸收信息,以估算涡质粘度闭合至CURE CURE标准的Galerkin降低订单模型(GROM)预测。因此,我们的方法提供了一个模块化框架,以纠正潜在空间上稀疏观察网络的预测错误。我们强调,提议的GROM-FSM框架对于新兴的数字双胞胎应用程序有希望,可以使用实时传感器测量来更新和优化替代模型的参数。
In this paper, we propose a variational approach to estimate eddy viscosity using forward sensitivity method (FSM) for closure modeling in nonlinear reduced order models. FSM is a data assimilation technique that blends model's predictions with noisy observations to correct initial state and/or model parameters. We apply this approach on a projection based reduced order model (ROM) of the one-dimensional viscous Burgers equation with a square wave defining a moving shock, and the two-dimensional vorticity transport equation formulating a decay of Kraichnan turbulence. We investigate the capability of the approach to approximate an optimal value for eddy viscosity with different measurement configurations. Specifically, we show that our approach can sufficiently assimilate information either through full field or sparse noisy measurements to estimate eddy viscosity closure to cure standard Galerkin reduced order model (GROM) predictions. Therefore, our approach provides a modular framework to correct forecasting error from a sparse observational network on a latent space. We highlight that the proposed GROM-FSM framework is promising for emerging digital twin applications, where real-time sensor measurements can be used to update and optimize surrogate model's parameters.