论文标题

简洁的Trit-Array Trie用于可扩展轨迹相似性搜索

Succinct Trit-array Trie for Scalable Trajectory Similarity Search

论文作者

Kanda, Shunsuke, Takeuchi, Koh, Fujii, Keisuke, Tabei, Yasuo

论文摘要

代表各种移动物体流动性的空间轨迹的大量数据集在研究和行业中无处不在。对于将这些数据集变成知识的相似性搜索大量轨迹是必不可少的。局部敏感的哈希(LSH)是快速相似性搜索的强大技术。最近的方法采用LSH并试图实现对轨迹的有效相似性搜索;但是,将这些方法应用于大量数据集时,这些方法在搜索时间和内存方面效率低下。为了解决这个问题,我们介绍了轨迹索引简洁的Trit-array Trie(TSTAT),这是利用LSH进行轨迹相似性搜索的可扩展方法。 TSTAT快速在称为Trie的树数据结构上执行搜索。我们还提出了两种新型技术,可以显着提高TSTAT的记忆效率。一种是一种节点减少技术,该技术在保持时间性能的同时大大忽略了冗余的Trie节点。另一个是一种空间有效的表示,它利用简洁的数据结构背后的想法(即,压缩数据结构支持快速数据操作)。我们通过实验测试TSTAT,可以从大量轨迹收集中检索相似轨迹的能力,并表明TSTAT与最新的相似性搜索方法相比表现优越。

Massive datasets of spatial trajectories representing the mobility of a diversity of moving objects are ubiquitous in research and industry. Similarity search of a large collection of trajectories is indispensable for turning these datasets into knowledge. Locality sensitive hashing (LSH) is a powerful technique for fast similarity searches. Recent methods employ LSH and attempt to realize an efficient similarity search of trajectories; however, those methods are inefficient in terms of search time and memory when applied to massive datasets. To address this problem, we present the trajectory-indexing succinct trit-array trie (tSTAT), which is a scalable method leveraging LSH for trajectory similarity searches. tSTAT quickly performs the search on a tree data structure called trie. We also present two novel techniques that enable to dramatically enhance the memory efficiency of tSTAT. One is a node reduction technique that substantially omits redundant trie nodes while maintaining the time performance. The other is a space-efficient representation that leverages the idea behind succinct data structures (i.e., a compressed data structure supporting fast data operations). We experimentally test tSTAT on its ability to retrieve similar trajectories for a query from large collections of trajectories and show that tSTAT performs superiorly in comparison to state-of-the-art similarity search methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源