论文标题
Janus接口熵和四维$ \ MATHCAL {n} = 2 $ SUPERCON-CONSURAL FIELD FIELD THEERY中的Calabi的分解
Janus interface entropy and Calabi's diastasis in four-dimensional $\mathcal{N}=2$ superconformal field theories
论文作者
论文摘要
我们研究了与Janus接口相关的熵,以4 $ d $ $ \ MATHCAL {N} = 2 $ SUPERCON -CONSURAL FIELD理论。熵被定义为对纠缠熵的界面的贡献,我们在温和的假设下表明,Janus界面的熵与$ \ Mathcal {n} = 2 $ Marginal Couplings的几何数量成正比,称为Calabi的消除量,使早期的猜想确信,两者构成了两个迹象。我们的方法是基于CFT考虑的,该考虑利用了从平坦空间到圆形球体的赌场 - 夏威夷美犬的共形图。
We study the entropy associated with the Janus interface in a 4$d$ $\mathcal{N}=2$ superconformal field theory. With the entropy defined as the interface contribution to an entanglement entropy we show, under mild assumptions, that the Janus interface entropy is proportional to the geometric quantity called Calabi's diastasis on the space of $\mathcal{N}=2$ marginal couplings, confirming an earlier conjecture by two of the authors and generalizing a similar result in two dimensions. Our method is based on a CFT consideration that makes use of the Casini-Huerta-Myers conformal map from the flat space to the round sphere.