论文标题

重新利用开放数据以使用深度学习发现Covid-19的治疗剂

Repurpose Open Data to Discover Therapeutics for COVID-19 using Deep Learning

论文作者

Zeng, Xiangxiang, Song, Xiang, Ma, Tengfei, Pan, Xiaoqin, Zhou, Yadi, Hou, Yuan, Zhang, Zheng, Karypis, George, Cheng, Feixiong

论文摘要

仅在美国,仅在美国,已有85万多例2019年人类冠状病毒病(COVID-19)大流行的病例和48,000多人死亡。但是,目前尚无针对Covid-19的有效药物。药物重新利用为共同制定Covid-19的预防和治疗策略提供了一种有希望的方法。这项研究报告了一种基于网络的深度学习方法,以识别Covid-19(称为CoV-KGE)的可再现药物。具体而言,我们构建了一个全面的知识图,其中包括39种相互连接的关系,疾病,基因,途径和表达的关系的1500万个边缘,这些关系来自2400万个PubMed出版物的大型科学语料库。使用亚马逊AWS计算资源,我们确定了41种可重复的药物(包括吲哚美辛,toremifene和Niclosamide),其与COVID-19的治疗相关性通过SARS-COV-2感染的人类细胞中的转录组和蛋白质组学数据得到了验证,并在正在进行的临床试验中受到了感染的人类细胞和数据。尽管这项研究绝不建议使用特定的药物,但它证明了一种有力的深度学习方法,可以优先考虑现有药物进行进一步研究,这具有加速Covid-19的治疗性开发的潜力。

There have been more than 850,000 confirmed cases and over 48,000 deaths from the human coronavirus disease 2019 (COVID-19) pandemic, caused by novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), in the United States alone. However, there are currently no proven effective medications against COVID-19. Drug repurposing offers a promising way for the development of prevention and treatment strategies for COVID-19. This study reports an integrative, network-based deep learning methodology to identify repurposable drugs for COVID-19 (termed CoV-KGE). Specifically, we built a comprehensive knowledge graph that includes 15 million edges across 39 types of relationships connecting drugs, diseases, genes, pathways, and expressions, from a large scientific corpus of 24 million PubMed publications. Using Amazon AWS computing resources, we identified 41 repurposable drugs (including indomethacin, toremifene and niclosamide) whose therapeutic association with COVID-19 were validated by transcriptomic and proteomic data in SARS-CoV-2 infected human cells and data from ongoing clinical trials. While this study, by no means recommends specific drugs, it demonstrates a powerful deep learning methodology to prioritize existing drugs for further investigation, which holds the potential of accelerating therapeutic development for COVID-19.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源