论文标题
通过社会疏远的有效公共善分配的市场
Markets for Efficient Public Good Allocation with Social Distancing
论文作者
论文摘要
在没有监管机制的情况下,公共物品通常被过度消费,或者是完全未使用的,例如在19日大流行中,在这种情况下,社会距离的限制被强制限制可以共享公共空间的人数。在这项工作中,我们通过旨在有效分配容量约束的公共物品的基于市场的机制来弥补这一差距。为了设计这些机制,我们利用了费舍尔市场的理论,其中经济中的每个代理都赋予了他们可以花费的人工货币预算来利用公共物品。尽管费舍尔市场为建模资源分配问题提供了强大的方法论主干,但其适用性仅限于涉及两种限制的设置 - 个人买家的预算和商品的能力。因此,我们引入了一个改良的费舍尔市场,每个人都可能具有其他物理约束,表征其解决方案特性并确定市场均衡的存在。此外,为了考虑其他约束,我们引入了一个社会凸优化问题,在这种情况下,我们会扰动代理的预算,使得受干扰社会问题的KKT条件建立了平衡价格。最后,为了计算预算扰动,我们提出了一个固定点方案,并通过数值实验说明了收敛的保证。因此,在理论上和计算上,我们的机制都克服了古典费舍尔市场的基本限制,这些局限性仅考虑能力和预算限制。
Public goods are often either over-consumed in the absence of regulatory mechanisms, or remain completely unused, as in the Covid-19 pandemic, where social distance constraints are enforced to limit the number of people who can share public spaces. In this work, we plug this gap through market based mechanisms designed to efficiently allocate capacity constrained public goods. To design these mechanisms, we leverage the theory of Fisher markets, wherein each agent in the economy is endowed with an artificial currency budget that they can spend to avail public goods. While Fisher markets provide a strong methodological backbone to model resource allocation problems, their applicability is limited to settings involving two types of constraints - budgets of individual buyers and capacities of goods. Thus, we introduce a modified Fisher market, where each individual may have additional physical constraints, characterize its solution properties and establish the existence of a market equilibrium. Furthermore, to account for additional constraints we introduce a social convex optimization problem where we perturb the budgets of agents such that the KKT conditions of the perturbed social problem establishes equilibrium prices. Finally, to compute the budget perturbations we present a fixed point scheme and illustrate convergence guarantees through numerical experiments. Thus, our mechanism, both theoretically and computationally, overcomes a fundamental limitation of classical Fisher markets, which only consider capacity and budget constraints.