论文标题

CNN是否解决了CT逆问题?

Do CNNs solve the CT inverse problem?

论文作者

Sidky, Emil Y., Lorente, Iris, Brankov, Jovan G., Pan, Xiaochuan

论文摘要

目的:这项工作研究了文献中提出的主张,即可以通过卷积神经网络(CNN)解决稀疏视图计算机断层扫描(CT)中与图像重建相关的反问题。方法:使用两个不同的对象模型,在专用的乳房CT模拟中生成训练和测试图像/数据对,用于稀疏视图采样。测试了训练有素的CNN,以查看是否可以从相应的稀疏视图数据中准确恢复图像。作为参考,通过使用约束总变化(TV)最小化(TVMIN)重建相同的稀疏视图CT数据,该数据利用了梯度幅度图像(GMI)中的稀疏性。结果:使用训练或测试集中图像中的稀疏视图数据,使用CNN获得的图像与生成数据的图像之间存在显着差异。对于相同的模拟扫描条件,TVMIN能够准确地重建测试图像。结论:我们发现,对于我们选择的特定已发表的CNN方法和我们测试的特定对象模型,稀疏视图CT CT逆问题无法解决。此外,对于TVMIN能够恢复测试图像的条件,获得了这种负结果。意义:CNN无法解决与稀疏视图CT相关的逆问题,对于提出的模拟的特定条件,提出了类似的不支持的主张,以使用CNN来解决医学成像中的反向问题。

Objective: This work examines the claim made in the literature that the inverse problem associated with image reconstruction in sparse-view computed tomography (CT) can be solved with a convolutional neural network (CNN). Methods: Training and testing image/data pairs are generated in a dedicated breast CT simulation for sparse-view sampling, using two different object models. The trained CNN is tested to see if images can be accurately recovered from their corresponding sparse-view data. For reference, the same sparse-view CT data is reconstructed by the use of constrained total-variation (TV) minimization (TVmin), which exploits sparsity in the gradient magnitude image (GMI). Results: Using sparse-view data from images either in the training or testing set, there is a significant discrepancy between the image obtained with the CNN and the image that generated the data. For the same simulated scanning conditions, TVmin is able to accurately reconstruct the test image. Conclusion: We find that the sparse-view CT inverse problem cannot be solved for the particular published CNN-based methodology that we chose and the particular object model that we tested. Furthermore, this negative result is obtained for conditions where TVmin is able to recover the test images. Significance: The inability of the CNN to solve the inverse problem associated with sparse-view CT, for the specific conditions of the presented simulation, draws into question similar unsupported claims being made for the use of CNNs to solve inverse problems in medical imaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源