论文标题
有效的集合模型生成用于不确定性估计的贝叶斯近似
Efficient Ensemble Model Generation for Uncertainty Estimation with Bayesian Approximation in Segmentation
论文作者
论文摘要
最近的研究表明,整体方法不仅可以提高准确性,而且还可以估计深度学习中的模型不确定性。但是,根据集合模型的增加,需要大量参数,以更好地预测和不确定性估计。为了解决这个问题,本文设计了一个通用有效的分割框架来构建集合分割模型。在提出的方法中,可以使用随机层选择方法有效地生成集合模型。通过贝叶斯近似,对合奏模型进行了训练以估计不确定性。此外,为了克服不确定实例的局限性,我们设计了一种新的像素不确定性损失,从而提高了预测性能。为了评估我们的方法,在两个数据集上进行了全面和比较实验。实验结果表明,所提出的方法可以通过贝叶斯近似和有效的集合模型生成并改善预测性能来提供有用的不确定性信息。
Recent studies have shown that ensemble approaches could not only improve accuracy and but also estimate model uncertainty in deep learning. However, it requires a large number of parameters according to the increase of ensemble models for better prediction and uncertainty estimation. To address this issue, a generic and efficient segmentation framework to construct ensemble segmentation models is devised in this paper. In the proposed method, ensemble models can be efficiently generated by using the stochastic layer selection method. The ensemble models are trained to estimate uncertainty through Bayesian approximation. Moreover, to overcome its limitation from uncertain instances, we devise a new pixel-wise uncertainty loss, which improves the predictive performance. To evaluate our method, comprehensive and comparative experiments have been conducted on two datasets. Experimental results show that the proposed method could provide useful uncertainty information by Bayesian approximation with the efficient ensemble model generation and improve the predictive performance.