论文标题

用于分散的有限和优化的最佳算法

An Optimal Algorithm for Decentralized Finite Sum Optimization

论文作者

Hendrikx, Hadrien, Bach, Francis, Massoulie, Laurent

论文摘要

现代大规模有限和优化依赖于两个关键方面:分发和随机更新。对于平稳且强烈的凸问题,现有的分散算法比现代加速降低方差降低的随机算法慢,因此在一台机器上运行,因此不有效。集中算法很快,但是它们的扩展受到导致通信瓶颈的全球聚合步骤的限制。在这项工作中,我们提出了一个有效的\ textbf {a} celerated \ textbf {d}对\ textbf {f} inite \ textbf {s} ums in n n n n nnodes之间的局部随机更新和无效的通信。在$ n $机器上,ADFS使用$ nm $样品最小化目标功能,同时需要最佳的算法才能从一台计算机上的$ m $样品中进行优化。这种缩放一直存在,直到达到关键的网络大小为止,这取决于通信延迟,样本$ m $以及网络拓扑的数量。我们给出了复杂性的下限,以表明ADF在分散算法中是最佳的。为了得出ADF,我们首先开发了加速坐标梯度算法到任意采样的扩展。然后,我们将此坐标下降算法应用于基于增强图方法的精心选择的双重问题,从而导致一般ADFS算法。我们说明了通过实验的最先进的分散方法,ADF的改善。

Modern large-scale finite-sum optimization relies on two key aspects: distribution and stochastic updates. For smooth and strongly convex problems, existing decentralized algorithms are slower than modern accelerated variance-reduced stochastic algorithms when run on a single machine, and are therefore not efficient. Centralized algorithms are fast, but their scaling is limited by global aggregation steps that result in communication bottlenecks. In this work, we propose an efficient \textbf{A}ccelerated \textbf{D}ecentralized stochastic algorithm for \textbf{F}inite \textbf{S}ums named ADFS, which uses local stochastic proximal updates and decentralized communications between nodes. On $n$ machines, ADFS minimizes the objective function with $nm$ samples in the same time it takes optimal algorithms to optimize from $m$ samples on one machine. This scaling holds until a critical network size is reached, which depends on communication delays, on the number of samples $m$, and on the network topology. We give a lower bound of complexity to show that ADFS is optimal among decentralized algorithms. To derive ADFS, we first develop an extension of the accelerated proximal coordinate gradient algorithm to arbitrary sampling. Then, we apply this coordinate descent algorithm to a well-chosen dual problem based on an augmented graph approach, leading to the general ADFS algorithm. We illustrate the improvement of ADFS over state-of-the-art decentralized approaches with experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源