论文标题
4D $ \ MATHCAL {n} = 1 $ superCongrongormal Index的大$ n $限制
The large-$N$ limit of the 4d $\mathcal{N}=1$ superconformal index
论文作者
论文摘要
我们系统地分析了具有Quiver描述的$ \ Mathcal {n} = 1 $的超符号{n} = 1 $的超符号索引的限制。这些理论的索引是从单位矩阵积分方面已知的,我们使用最近开发的椭圆扩展技术来计算。这项技术使我们能够轻松地评估该积分作为在仪表组无限等级的有效动作的鞍点上的总和。对于正在考虑的通用箭话理论,我们发现了一个特殊的马鞍家族,其有效的作用采用了由该理论的异常系数控制的普遍形式。这个家族在全息双重广告$ _5 $理论中包括已知的超对称黑洞解决方案。然后,我们通过打开风味化学潜力来分析所完善的指数。我们表明,对于一定范围的化学电位,有效的作用再次采用了由理论的异常系数控制的通用立方体形式。最后,我们向鞍点方程式提供了一大批解决方案,这些解决方案由有限的阿伯利亚人组的群体同构列$ n $标记。
We systematically analyze the large-$N$ limit of the superconformal index of $\mathcal{N}=1$ superconformal theories having a quiver description. The index of these theories is known in terms of unitary matrix integrals, which we calculate using the recently-developed technique of elliptic extension. This technique allows us to easily evaluate the integral as a sum over saddle points of an effective action in the limit where the rank of the gauge group is infinite. For a generic quiver theory under consideration, we find a special family of saddles whose effective action takes a universal form controlled by the anomaly coefficients of the theory. This family includes the known supersymmetric black hole solution in the holographically dual AdS$_5$ theories. We then analyze the index refined by turning on flavor chemical potentials. We show that, for a certain range of chemical potentials, the effective action again takes a universal cubic form that is controlled by the anomaly coefficients of the theory. Finally, we present a large class of solutions to the saddle-point equations which are labelled by group homomorphisms of finite abelian groups of order $N$ into the torus.