论文标题

fibonacci组F(2,N)对于N ODD和N> = 11是双曲线

Fibonacci groups, F(2,n), are hyperbolic for n odd and n >= 11

论文作者

Chalk, Christopher

论文摘要

我们证明fibonacci组F(2,n)对于n奇数和n> = 11是双曲线。我们通过将曲率参数应用于F(2,N)的任意范Kampen图来做到这一点,并表明它满足了线性的等法不平等。然后遵循F(2,N)是双曲线。

We prove that the Fibonacci group, F(2,n), for n odd and n >= 11 is hyperbolic. We do this by applying a curvature argument to an arbitrary van Kampen diagram of F(2,n) and show that it satisfies a linear isoperimetric inequality. It then follows that F(2, n) is hyperbolic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源