论文标题

功能连接的极端理论:一种用于求解参数微分方程的物理信息的神经网络方法

Extreme Theory of Functional Connections: A Physics-Informed Neural Network Method for Solving Parametric Differential Equations

论文作者

Schiassi, Enrico, Leake, Carl, De Florio, Mario, Johnston, Hunter, Furfaro, Roberto, Mortari, Daniele

论文摘要

在这项工作中,我们提出了一种新颖,准确且健壮的物理信息,用于解决涉及参数微分方程(DES)的问题,称为功能连接的极端理论或X-TFC。所提出的方法是两个最近开发的框架的协同作用,用于解决涉及参数DES的问题,1)功能连接理论TFC和物理知识的神经网络Pinn。尽管本文着重于具有已知参数的涉及参数DES的确切问题的解决方案(即建模误差可忽略不计的问题),但X-TFC也可用于数据驱动的解决方案和数据驱动的参数DES发现。在提出的方法中,参数DES的潜在解由使用神经网络(NN)作为自由功能的TFC约束表达式近似。这种近似解决方案形式始终在分析上满足DE的约束,同时保持具有无约束参数(例如Deep-TFC方法)的NN。 X-TFC不同于Pinn和Deep-TFC; Pinn和Deep-TFC使用Deep-NN,而X-TFC则使用单层NN或更精确的极端学习机器ELM。此选择基于ELM算法的属性。为了在数值上验证该方法,在一系列问题上进行了测试,包括对线性和非线性普通DES(ODE)的近似值,ODES(SODES)和部分DES(PDES)。此外,其中一些问题在物理和工程中引起了人们的关注,例如经典的Emden-Fowler方程,辐射转移(RT)方程和热转移(HT)方程。结果表明,X-TFC的计算时间较低,因此可以与其他最新方法相媲美。

In this work we present a novel, accurate, and robust physics-informed method for solving problems involving parametric differential equations (DEs) called the Extreme Theory of Functional Connections, or X-TFC. The proposed method is a synergy of two recently developed frameworks for solving problems involving parametric DEs, 1) the Theory of Functional Connections, TFC, and the Physics-Informed Neural Networks, PINN. Although this paper focuses on the solution of exact problems involving parametric DEs (i.e. problems where the modeling error is negligible) with known parameters, X-TFC can also be used for data-driven solutions and data-driven discovery of parametric DEs. In the proposed method, the latent solution of the parametric DEs is approximated by a TFC constrained expression that uses a Neural Network (NN) as the free-function. This approximate solution form always analytically satisfies the constraints of the DE, while maintaining a NN with unconstrained parameters, like the Deep-TFC method. X-TFC differs from PINN and Deep-TFC; whereas PINN and Deep-TFC use a deep-NN, X-TFC uses a single-layer NN, or more precisely, an Extreme Learning Machine, ELM. This choice is based on the properties of the ELM algorithm. In order to numerically validate the method, it was tested over a range of problems including the approximation of solutions to linear and non-linear ordinary DEs (ODEs), systems of ODEs (SODEs), and partial DEs (PDEs). Furthermore, a few of these problems are of interest in physics and engineering such as the Classic Emden-Fowler equation, the Radiative Transfer (RT) equation, and the Heat-Transfer (HT) equation. The results show that X-TFC achieves high accuracy with low computational time and thus it is comparable with the other state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源