论文标题

二维随机非线性波方程的全局动力学

Global dynamics for the two-dimensional stochastic nonlinear wave equations

论文作者

Gubinelli, Massimiliano, Koch, Herbert, Oh, Tadahiro, Tolomeo, Leonardo

论文摘要

我们研究了随机非线性波方程(SNLW)的全球时间动力学,并具有添加剂时空白噪声强迫,并在二维圆环上构成。我们本文的目标是两个方面。 (i)通过引入一个混合参数,将随机环境中的$ i $ - 方法与gronwall型参数相结合,我们首先证明了(重新归一化的)立方snlw在偏腹情况下的全球范围良好。我们的论点产生了解决方案Sobolev规范的双重指数增长。 (ii)然后,我们研究了散落的情况下的随机阻尼非线性波方程(SDNLW)。特别是,通过应用波尔加因的不变量参数,我们证明了(重新归一化的)depocations sdnlw的全球良好性相对于吉布斯的测量和吉布斯度量的不变性。

We study global-in-time dynamics of the stochastic nonlinear wave equations (SNLW) with an additive space-time white noise forcing, posed on the two-dimensional torus. Our goal in this paper is two-fold. (i) By introducing a hybrid argument, combining the $I$-method in the stochastic setting with a Gronwall-type argument, we first prove global well-posedness of the (renormalized) cubic SNLW in the defocusing case. Our argument yields a double exponential growth bound on the Sobolev norm of a solution. (ii) We then study the stochastic damped nonlinear wave equations (SdNLW) in the defocusing case. In particular, by applying Bourgain's invariant measure argument, we prove almost sure global well-posedness of the (renormalized) defocusing SdNLW with respect to the Gibbs measure and invariance of the Gibbs measure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源