论文标题

电子能量损失光谱(EEL)的高斯工艺分析数据:平行重建和内核控制

Gaussian process analysis of Electron Energy Loss Spectroscopy (EELS) data: parallel reconstruction and kernel control

论文作者

Kalinin, Sergei V., Lupini, Andrew R., Vasudevan, Rama K., Ziatdinov, Maxim

论文摘要

扫描传输电子显微镜(STEM)中的高光谱成像模式的进展,包括电子能量损耗光谱(EEL),带来了探索性和基于物理学的多维数据集的挑战。 (到现在为常见的)多元无监督的线性解混合方法及其非线性类似物通常会探索能量维度的相似性,但忽略了空间域中的相关性。同时,以内核函数形式显式合并空间相关性的高斯过程(GP)方法往往是非常计算的强度,而使用基于诱导点的稀疏方法通常会导致重建人工构造。在这里,我们建议并实施在整个空间域上运行的并行GP方法,并减少了能量域中的表示。在此平行的GP中,组件之间的信息通过常见的空间内核结构共享,同时允许相对噪声幅度或图像形态的变异性。我们探讨了常见的空间结构和内核约束对重建质量的作用,并提出了一种从实验数据中估算这些因素的方法。将此方法应用于eels数据集示例表明,可以重建高阶组件中包含的空间信息并在空间上进行定位。该方法可以进一步应用于其他高光谱和多模式成像模式。作为GPIM软件包(https://github.com/ziatdinovmax/gpim)的一部分,在本手稿中开发的笔记本可免费获得。

Advances in hyperspectral imaging modes including electron energy loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM) bring forth the challenges of exploratory and subsequently physics-based analysis of multidimensional data sets. The (by now common) multivariate unsupervised linear unmixing methods and their nonlinear analogs generally explore similarities in the energy dimension but ignore correlations in the spatial domain. At the same time, Gaussian process (GP) methods that explicitly incorporate spatial correlations in the form of kernel functions tend to be extremely computationally intensive, while the use of inducing point-based sparse methods often leads to reconstruction artefacts. Here, we suggest and implement a parallel GP method operating on the full spatial domain and reduced representations in the energy domain. In this parallel GP, the information between the components is shared via a common spatial kernel structure while allowing for variability in the relative noise magnitude or image morphology. We explore the role of common spatial structures and kernel constraints on the quality of the reconstruction and suggest an approach for estimating these factors from the experimental data. Application of this method to an example EELS dataset demonstrates that spatial information contained in higher-order components can be reconstructed and spatially localized. This approach can be further applied to other hyperspectral and multimodal imaging modes. The notebooks developed in this manuscript are freely available as part of a GPim package (https://github.com/ziatdinovmax/GPim).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源