论文标题

揭示通过机器学习回归不确定性对自propelted活动粒子的植入相变

Reveal flocking phase transition of self-propelled active particles by machine learning regression uncertainty

论文作者

Guo, Wei-Chen, Ai, Bao-Quan, He, Liang

论文摘要

我们开发了基于神经网络的“从回归不确定性学习”方法,以自动检测非平衡活动系统中物质阶段。例如,进行维切克模型所描述的自属性活性颗粒的浮游相过渡,例如,我们发现,在训练一个神经网络以解决求解逆统计问题的神经网络,即执行从给定样品的给定样品中重构噪声水平的回归任务,以使许多身体复杂系统的稳定态度的稳定阶段的稳定性相关的回归阶段,实际上是稳定的,这实际上是稳定的,实际上是不确定的。正在研究的系统中的过渡。回归不确定性的噪声水平依赖性假定非平凡的M形状,其山谷出现在羊群过渡的临界点。通过将这种基于回归的方法与广泛使用的基于分类的“混乱学习”和“用空白学习”方法进行比较,我们表明我们的方法具有实际有效性,效率,对跨学科领域的各种物理系统的良好通用性,以及通过常规物理学概念可以解释的更大可能性。这些方法可以相互补充,以作为一种有希望的通用工具箱,用于研究丰富的关键现象,并提供有关存在各种相变存在的数据驱动的证据,尤其是对于那些与一阶相变或非平衡活性系统相关的复杂情况,传统研究方法在物理学上可能面临困难。

We develop the neural network based "learning from regression uncertainty" approach for automated detection of phases of matter in nonequilibrium active systems. Taking the flocking phase transition of self-propelled active particles described by the Vicsek model for example, we find that after training a neural network for solving the inverse statistical problem, i.e., for performing the regression task of reconstructing the noise level from given samples of such a nonequilibrium many-body complex system's steady state configurations, the uncertainty of regression results obtained by the well-trained network can actually be utilized to reveal possible phase transitions in the system under study. The noise level dependence of regression uncertainty assumes a non-trivial M-shape, and its valley appears at the critical point of the flocking phase transition. By directly comparing this regression-based approach with the widely-used classification-based "learning by confusion" and "learning with blanking" approaches, we show that our approach has practical effectiveness, efficiency, good generality for various physical systems across interdisciplinary fields, and a greater possibility of being interpretable via conventional notions of physics. These approaches can complement each other to serve as a promising generic toolbox for investigating rich critical phenomena and providing data-driven evidence on the existence of various phase transitions, especially for those complex scenarios associated with first-order phase transitions or nonequilibrium active systems where traditional research methods in physics could face difficulties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源