论文标题

具有潜在生物标志物效应的临床试验的最佳设计,这是一种新型的计算方法

The Optimal Design of Clinical Trials with Potential Biomarker Effects, A Novel Computational Approach

论文作者

Lu, Yitao, Zhou, Julie, Xing, Li, Zhang, Xuekui

论文摘要

作为医疗保健的未来趋势,个性化医学为个别患者量身定制医疗治疗。它需要确定对治疗最佳反应的一部分患者。子集可以通过生物标志物(例如基因的表达)及其截止值来定义。子集识别的主题受到了极大的关注。 Google Scholar上的关键字搜索有超过200万次命中。但是,如何正确地将确定的子集/生物标志物纳入设计临床试验并不是微不足道的,并且在文献中很少讨论,这导致研究结果与现实世界中的药物开发之间存在差距。 为了填补这一空白,我们将临床试验设计的问题提出了涉及高维整合的优化问题,并提出了一种基于蒙特卡洛和平滑方法的新型计算解决方案。我们的方法利用图形处理单元上通用计算的现代技术来用于大规模并行计算。与三维问题中的标准方法相比,我们的方法更准确,更快的速度更快。当维度增加时,该优势会增加。我们的方法可扩展到较高维度问题,因为精度界限是不受维数影响的有限数字。 我们的软件将在Github和Cran上提供,可用于指导临床试验的设计以更好地纳入生物标志物。尽管我们的研究是由临床试验设计的动机,但该方法可广泛用于解决涉及高维整合的其他优化问题。

As a future trend of healthcare, personalized medicine tailors medical treatments to individual patients. It requires to identify a subset of patients with the best response to treatment. The subset can be defined by a biomarker (e.g. expression of a gene) and its cutoff value. Topics on subset identification have received massive attention. There are over 2 million hits by keyword searches on Google Scholar. However, how to properly incorporate the identified subsets/biomarkers to design clinical trials is not trivial and rarely discussed in the literature, which leads to a gap between research results and real-world drug development. To fill in this gap, we formulate the problem of clinical trial design into an optimization problem involving high-dimensional integration, and propose a novel computational solution based on Monte-Carlo and smoothing methods. Our method utilizes the modern techniques of General-Purpose computing on Graphics Processing Units for large-scale parallel computing. Compared to the standard method in three-dimensional problems, our approach is more accurate and 133 times faster. This advantage increases when dimensionality increases. Our method is scalable to higher-dimensional problems since the precision bound is a finite number not affected by dimensionality. Our software will be available on GitHub and CRAN, which can be applied to guide the design of clinical trials to incorporate the biomarker better. Although our research is motivated by the design of clinical trials, the method can be used widely to solve other optimization problems involving high-dimensional integration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源