论文标题

使用代表学习学习产品竞赛

Studying Product Competition Using Representation Learning

论文作者

Chen, Fanglin, Liu, Xiao, Proserpio, Davide, Troncoso, Isamar, Xiong, Feiyu

论文摘要

在产品水平而不是品牌水平上研究竞争和市场结构可以为企业提供有关蚕丝化和产品线优化的见解。但是,在电子商务平台上分析数百万个产品的产品级竞争在计算上具有挑战性。我们介绍了基于表示算法Word2Vec的Product2VEC,以研究产品级竞争,当时产品级时。提出的模型将购物篮作为输入,并为每种产品生成一个低维的嵌入式,以保留重要的产品信息。为了使产品嵌入对于公司的战略决策有用,我们利用经济理论和因果推论对Word2Vec提出了两种修改。首先,我们创建了两种措施:互补性和交换性,使我们能够确定产品对是补充还是替代品。其次,我们将这些向量与基于随机效用的选择模型相结合以预测需求。为了准确估计价格弹性,即需求如何响应价格变化,我们通过删除产品向量的价格来修改Word2Vec。我们表明,与最先进的模型相比,我们的方法更快,可以产生更准确的需求预测和价格弹性。

Studying competition and market structure at the product level instead of brand level can provide firms with insights on cannibalization and product line optimization. However, it is computationally challenging to analyze product-level competition for the millions of products available on e-commerce platforms. We introduce Product2Vec, a method based on the representation learning algorithm Word2Vec, to study product-level competition, when the number of products is large. The proposed model takes shopping baskets as inputs and, for every product, generates a low-dimensional embedding that preserves important product information. In order for the product embeddings to be useful for firm strategic decision making, we leverage economic theories and causal inference to propose two modifications to Word2Vec. First of all, we create two measures, complementarity and exchangeability, that allow us to determine whether product pairs are complements or substitutes. Second, we combine these vectors with random utility-based choice models to forecast demand. To accurately estimate price elasticities, i.e., how demand responds to changes in price, we modify Word2Vec by removing the influence of price from the product vectors. We show that, compared with state-of-the-art models, our approach is faster, and can produce more accurate demand forecasts and price elasticities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源