论文标题
较高的旋转,二次形式和振幅
Higher spins, quadratic forms and amplitudes
论文作者
论文摘要
旋转1和自旋2个领域的轻锥汉密尔顿人描述了纯度和最大超对称理论,可以表示为二次形式。在本文中,我们表明此功能扩展到较高的较高自旋理论。为了在耦合常数中进行一阶,我们证明具有和不具有超对称性的较高自旋的汉密尔顿人是二次形式。在此框架中,散射幅度结构自然出现,我们将超对称性高旋转理论中的动量空间顶点与N = 4 Yang-Mills理论中的相应顶点联系起来。
The light-cone Hamiltonians for spin 1 and spin 2 fields, describing both the pure and the maximally supersymmetric theories, may be expressed as quadratic forms. In this paper, we show that this feature extends to light-cone higher spin theories. To first order in the coupling constant, we prove that the higher spin Hamiltonians, with and without supersymmetry, are quadratic forms. Scattering amplitude structures emerge naturally in this framework and we relate the momentum space vertex in a supersymmetric higher spin theory to the corresponding vertex in the N=4 Yang-Mills theory.