论文标题

与生成对抗网络的随机超分辨率用于缩小随时间不断发展的大气场

Stochastic Super-Resolution for Downscaling Time-Evolving Atmospheric Fields with a Generative Adversarial Network

论文作者

Leinonen, Jussi, Nerini, Daniele, Berne, Alexis

论文摘要

最近已采用了生成对抗网络(GAN),用于超分辨率,这是一种与所谓的“降尺度”密切相关的应用程序:改善低分辨率图像的空间分辨率。有条件的gan生成给定输入的解决方案集合的能力自然而然地降低了降级,但是在超分辨率应用中通常不考虑gan的随机性质。在这里,我们介绍了一个反复的,随机的超分辨率gan,可以生成时间不断变化的高分辨率大气场的集合,以组成由同一磁场的低分辨率图像序列组成的输入。我们使用两个数据集测试了GAN,一个数据集由瑞士的雷达测量降水组成,另一个是云的光学厚度,该数据厚度源自卫星16(GON-16)。我们发现,GAN可以为两个数据集生成逼真的,时间一致的超分辨率序列。使用等级统计数据分析了生成的集合的统计特性,这是一种根据合奏天气预测改编的方法;这些分析表明,GAN在其输出中产生的变异性接近正确的可变性。由于GAN发电机是完全卷积的,因此可以在训练后将其应用于输入比训练它的图像更大的图像。它还能够生成时间序列比训练序列长得多,这通过将发电机应用于沉淀雷达数据的三个月数据集证明。我们的GAN的源代码可从https://github.com/jleinonen/downscaling-rnn-gan获得。

Generative adversarial networks (GANs) have been recently adopted for super-resolution, an application closely related to what is referred to as "downscaling" in the atmospheric sciences: improving the spatial resolution of low-resolution images. The ability of conditional GANs to generate an ensemble of solutions for a given input lends itself naturally to stochastic downscaling, but the stochastic nature of GANs is not usually considered in super-resolution applications. Here, we introduce a recurrent, stochastic super-resolution GAN that can generate ensembles of time-evolving high-resolution atmospheric fields for an input consisting of a low-resolution sequence of images of the same field. We test the GAN using two datasets, one consisting of radar-measured precipitation from Switzerland, the other of cloud optical thickness derived from the Geostationary Earth Observing Satellite 16 (GOES-16). We find that the GAN can generate realistic, temporally consistent super-resolution sequences for both datasets. The statistical properties of the generated ensemble are analyzed using rank statistics, a method adapted from ensemble weather forecasting; these analyses indicate that the GAN produces close to the correct amount of variability in its outputs. As the GAN generator is fully convolutional, it can be applied after training to input images larger than the images used to train it. It is also able to generate time series much longer than the training sequences, as demonstrated by applying the generator to a three-month dataset of the precipitation radar data. The source code to our GAN is available at https://github.com/jleinonen/downscaling-rnn-gan.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源