论文标题
冠状病毒疾病扩散的粒子建模(COVID-19)
Particle modeling of the spreading of Coronavirus Disease (COVID-19)
论文作者
论文摘要
到2020年7月底,Covid-19的大流行感染了超过1700万人,并已蔓延到全球几乎所有国家。作为回应,世界各地的许多国家都使用了不同的方法来降低感染率,例如包括案例隔离,关闭学校和大学,禁止公共事件,并大多迫使社会疏远,包括当地和国家的封锁。我们使用基于蒙特卡洛(MC)的算法使用我们工作中的最新流行病数据来预测不同人口密度的病毒感染率。我们使用三种不同的锁定模型和八个不同的约束组合测试冠状病毒的扩散,这使我们能够检查每个模型和约束的效率。在本文中,我们已经测试了三种无限制/锁定模式的不同时间循环模式。该模型的主要预测是,无限制/锁定的循环时间表至少包含每个时间周期锁定至少十天的锁定时间可以帮助控制病毒感染。特别是,当伴随社会疏远并完全隔离有症状的患者时,该模型会降低感染率。
By the end of July 2020, the COVID-19 pandemic had infected more than seventeen million people and had spread to almost all countries worldwide. In response, many countries all over the world have used different methods to reduce the infection rate, such as including case isolation, the closure of schools and universities, banning public events, and mostly forcing social distancing, including local and national lockdowns. We use a Monte-Carlo (MC) based algorithm to predict the virus infection rate for different population densities using the most recent epidemic data in our work. We test the spread of the Coronavirus using three different lockdown models, and eight various combinations of constraints, which allow us to examine the efficiency of each model and constraint. In this paper, we have tested three different time-cyclic patterns of no-restrictions/lockdown patterns. This model's main prediction is that a cyclic schedule of no-restrictions/lockdown that contains at least ten days of lockdown for each time cycle can help control the virus infection. In particular, this model reduces the infection rate when accompanied by social distancing and complete isolation of symptomatic patients.