论文标题
对抗规范相关分析
Adversarial Canonical Correlation Analysis
论文作者
论文摘要
规范相关分析(CCA)是一种统计技术,用于从多个数据源或视图中提取常见信息。它已用于各种表示学习问题,例如降低维度,单词嵌入和聚类。最近的工作使CCA概率基础在深度学习环境中,并为数据对数可能性的变异下限用于估计模型参数。另外,近年来,对抗技术已经成为自动编码器中变异贝叶斯方法的有力替代方法。在这项工作中,我们探讨了最新作品中深层CCA(VCCA和VCCA-PRIVATE)最近工作的直接对抗性替代方案,我们称为ACCA和ACCA-PRIVATE,并展示这些方法如何提供更强,更灵活的方法,以匹配从编码器到VCCA和VCCA-PCCA-PRIVARE-PRIVARE-PRIVARE-PRIVARE-PRIVARE-PRIVARE-PRIVARE-PRIVARE-PRIVARE-PRIVARES-PRIVARES-PRIERS的近似后代。这允许新的先验构成良好的代表性,例如解开基本变化因素,更直接地追求。我们通过使用我们称为Tangled Mnist的新设计的数据集,对VCCA私有制和ACCA私有化的多层次分离属性进行进一步分析。我们还针对这些模型设计了一个验证标准,理论上是基础,任务不可能的,并且在实践中效果很好。最后,我们通过得出VCCA的附加变异下限来填补次要的研究差距,该差异允许表示形式从两个输入视图中使用特定于视图的信息。
Canonical Correlation Analysis (CCA) is a statistical technique used to extract common information from multiple data sources or views. It has been used in various representation learning problems, such as dimensionality reduction, word embedding, and clustering. Recent work has given CCA probabilistic footing in a deep learning context and uses a variational lower bound for the data log likelihood to estimate model parameters. Alternatively, adversarial techniques have arisen in recent years as a powerful alternative to variational Bayesian methods in autoencoders. In this work, we explore straightforward adversarial alternatives to recent work in Deep Variational CCA (VCCA and VCCA-Private) we call ACCA and ACCA-Private and show how these approaches offer a stronger and more flexible way to match the approximate posteriors coming from encoders to much larger classes of priors than the VCCA and VCCA-Private models. This allows new priors for what constitutes a good representation, such as disentangling underlying factors of variation, to be more directly pursued. We offer further analysis on the multi-level disentangling properties of VCCA-Private and ACCA-Private through the use of a newly designed dataset we call Tangled MNIST. We also design a validation criteria for these models that is theoretically grounded, task-agnostic, and works well in practice. Lastly, we fill a minor research gap by deriving an additional variational lower bound for VCCA that allows the representation to use view-specific information from both input views.