论文标题
Tavis-Cummings模型及其准确解决的Schrödingerhamiltonians
Tavis-Cummings models and their quasi-exactly solvable Schrödinger Hamiltonians
论文作者
论文摘要
我们详细研究了量子光学的塔维斯 - 阵线哈密顿量与准确解决的schrödinger方程之间的关系。它们之间的连接是通过双音量heun方程式稳定的。我们发现,塔维斯 - 卡明斯汉密尔顿的每个不变的$ n $二维子空间都对应于$ n $势,每种都有一种已知的解决方案,或一个具有$ n $ n $已知解决方案的潜力。在这些Schrödinger电位中,有Quarkonium和六振荡器。
We study in detail the relationship between the Tavis-Cummings Hamiltonian of quantum optics and a family of quasi-exactly solvable Schrödinger equations. The connection between them is stablished through the biconfluent Heun equation. We found that each invariant $n$-dimensional subspace of Tavis-Cummings Hamiltonian corresponds either to $n$ potentials, each with one known solution, or to one potential with $n$-known solutions. Among these Schrödinger potentials appear the quarkonium and the sextic oscillator.