论文标题

干扰插值公式和应用

Perturbed interpolation formulae and applications

论文作者

Ramos, João P. G., Sousa, Mateus

论文摘要

我们采用功能分析技术来推断出一些经典和最新的插值导致傅立叶分析可以适当扰动。为了应用我们的技术,我们在真实和复杂的情况下,在佩奇的空间中获得了Kadec的1/4理论,用于插值公式,以及最近在最近的Radchenko-Viazovska interporation the Radchenko-viazovska interpolation intpolation in cohn-kumar-kumar-kumar-millerer-millerer-radchenko-viazovsko-viazova,尺寸8和24。我们还提供了主要结果和技术的几种应用,这所有应用都涉及插值公式的最新贡献以及傅立叶变换的唯一性集。

We employ functional analysis techniques in order to deduce that some classical and recent interpolation results in Fourier analysis can be suitably perturbed. As an application of our techniques, we obtain generalizations of Kadec's 1/4-theorem for interpolation formulae in the Paley-Wiener space both in the real and complex case, as well as a perturbation result on the recent Radchenko-Viazovska interpolation result and the Cohn-Kumar-Miller-Radchenko-Viazovska result for Fourier interpolation with derivatives in dimensions 8 and 24. We also provide several applications of the main results and techniques, all relating to recent contributions in interpolation formulae and uniqueness sets for the Fourier transform.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源