论文标题
光电流驱动的瞬态对称性破裂在Weyl Semimetal TAA中
Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs
论文作者
论文摘要
对称性在物质的常规和拓扑阶段中起着核心作用,使光学地驱动对称性变化的能力成为开发依赖这种控制的未来技术的关键步骤。拓扑材料(如新发现的拓扑半学),对破坏或恢复的时间反转和晶体对称性特别敏感,这会影响散装和表面电子状态。虽然先前的研究集中在通过与晶体晶格耦合控制对称性,但我们在这里证明了基于光电流产生的全电子机制。使用第二谐波生成光谱作为对称变化的敏感探针,我们观察到在原型I型Weyl semimetal semimetal semimetal Taas中,在飞秒光的光学激发后,时间反转和空间对称性的超快破裂。我们的结果表明,可以对光学驱动的光电流量身定制,以以通用方式明确打破电子对称性,从而在超快时间尺度上开放了在受对称保护状态之间驱动相位过渡的可能性。
Symmetry plays a central role in conventional and topological phases of matter, making the ability to optically drive symmetry change a critical step in developing future technologies that rely on such control. Topological materials, like the newly discovered topological semimetals, are particularly sensitive to a breaking or restoring of time-reversal and crystalline symmetries, which affect both bulk and surface electronic states. While previous studies have focused on controlling symmetry via coupling to the crystal lattice, we demonstrate here an all-electronic mechanism based on photocurrent generation. Using second-harmonic generation spectroscopy as a sensitive probe of symmetry change, we observe an ultrafast breaking of time-reversal and spatial symmetries following femtosecond optical excitation in the prototypical type-I Weyl semimetal TaAs. Our results show that optically driven photocurrents can be tailored to explicitly break electronic symmetry in a generic fashion, opening up the possibility of driving phase transitions between symmetry-protected states on ultrafast time scales.