论文标题

调整智能中的部分合规性:贝叶斯半参数方法

Adjusting for Partial Compliance in SMARTs: a Bayesian Semiparametric Approach

论文作者

Artman, William J., Ertefaie, Ashkan, Lynch, Kevin G., McKay, James R., Johnson, Brent A.

论文摘要

许多物质使用障碍的周期性和异质性质突出了需要适应治疗类型或剂量以适应个人的特定和不断变化的需求。酒精和可卡因依赖研究(GANG)的自适应治疗是一项多阶段随机试验,旨在提供纵向数据,用于构建治疗策略,以改善患者参与治疗。但是,高违规率和缺乏分析工具来解释不遵守违规的工具,阻碍了研究人员使用数据来实现试验的主要目标。我们通过将目标参数定义为给定潜在依从性层的不同治疗策略下的平均结果来克服这个问题,并提出了贝叶斯半参数模型来估计该数量。尽管它为分析增加了实质性的复杂性,但我们工作的一个重要特征是,我们认为在纵向研究中更相关的是部分而不是二元合规类。我们通过全面的仿真研究评估方法的性能。我们说明了其在参与研究中的应用,并证明了最佳治疗策略取决于依从性层。

The cyclical and heterogeneous nature of many substance use disorders highlights the need to adapt the type or the dose of treatment to accommodate the specific and changing needs of individuals. The Adaptive Treatment for Alcohol and Cocaine Dependence study (ENGAGE) is a multi-stage randomized trial that aimed to provide longitudinal data for constructing treatment strategies to improve patients' engagement in therapy. However, the high rate of noncompliance and lack of analytic tools to account for noncompliance have impeded researchers from using the data to achieve the main goal of the trial. We overcome this issue by defining our target parameter as the mean outcome under different treatment strategies for given potential compliance strata and propose a Bayesian semiparametric model to estimate this quantity. While it adds substantial complexities to the analysis, one important feature of our work is that we consider partial rather than binary compliance classes which is more relevant in longitudinal studies. We assess the performance of our method through comprehensive simulation studies. We illustrate its application on the ENGAGE study and demonstrate that the optimal treatment strategy depends on compliance strata.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源