论文标题
Swift:超级快速和强大的隐私机器学习
SWIFT: Super-fast and Robust Privacy-Preserving Machine Learning
论文作者
论文摘要
在私人数据上执行机器学习(ML)计算,同时维护数据隐私(又称隐私机器学习〜(PPML))是一个新兴的研究领域。最近,PPML看到了由于其所需的重大计算而朝着安全外包计算〜(SOC)范式采用的明显转变。在SOC范式中,计算将外包给一组功能强大且设备齐全的服务器,以每次使用付费提供服务。在这项工作中,我们提出了Swift,这是在SOC环境中针对一系列ML算法的强大PPML框架,可确保向用户输出输出,而与任何对抗性行为无关。鲁棒性是一个非常理想的功能,它唤起了用户的参与,而不必担心拒绝服务。 我们框架的核心是高效,恶意安全的三方计算(3pc),而不是在诚实多数的环境中提供保证的产出(上帝)的环。据我们所知,Swift是3PC设置中的第一个强大而有效的PPML框架。 Swift与最著名的3PC框架Blaze(Patra etal。NDSS'20)一样快(在某些情况下比某些情况下严格好),这只能实现公平。我们为四方(4PC)扩展了3PC框架。在这个制度中,Swift与最著名的Fair 4PC框架Trident(Chaudhari等人NDSS'20)一样快,并且是最著名的4pc 4pc Framework Flash(Byali等人Pets'20)的速度两倍。 我们通过对流行的ML算法进行基准测试,例如逻辑回归和深层神经网络,例如VGG16和LENET,这表明了我们的框架的实际相关性。对于Deep NN,我们的结果证明了我们的主张,即我们提供了改进的安全保证,同时又没有额外的3%开销,并获得了4%的2倍改进。
Performing machine learning (ML) computation on private data while maintaining data privacy, aka Privacy-preserving Machine Learning~(PPML), is an emergent field of research. Recently, PPML has seen a visible shift towards the adoption of the Secure Outsourced Computation~(SOC) paradigm due to the heavy computation that it entails. In the SOC paradigm, computation is outsourced to a set of powerful and specially equipped servers that provide service on a pay-per-use basis. In this work, we propose SWIFT, a robust PPML framework for a range of ML algorithms in SOC setting, that guarantees output delivery to the users irrespective of any adversarial behaviour. Robustness, a highly desirable feature, evokes user participation without the fear of denial of service. At the heart of our framework lies a highly-efficient, maliciously-secure, three-party computation (3PC) over rings that provides guaranteed output delivery (GOD) in the honest-majority setting. To the best of our knowledge, SWIFT is the first robust and efficient PPML framework in the 3PC setting. SWIFT is as fast as (and is strictly better in some cases than) the best-known 3PC framework BLAZE (Patra et al. NDSS'20), which only achieves fairness. We extend our 3PC framework for four parties (4PC). In this regime, SWIFT is as fast as the best known fair 4PC framework Trident (Chaudhari et al. NDSS'20) and twice faster than the best-known robust 4PC framework FLASH (Byali et al. PETS'20). We demonstrate our framework's practical relevance by benchmarking popular ML algorithms such as Logistic Regression and deep Neural Networks such as VGG16 and LeNet, both over a 64-bit ring in a WAN setting. For deep NN, our results testify to our claims that we provide improved security guarantee while incurring no additional overhead for 3PC and obtaining 2x improvement for 4PC.