论文标题

来自滚动轴轴承单构的合成重力波

Synthetic Gravitational Waves from a Rolling Axion Monodromy

论文作者

Özsoy, Ogan

论文摘要

在弦理论中,启发了类似轴突的磁场的模型,如果足够大的话,可以将陡峭的悬崖和温和的高原引入基础标量电位。在通货膨胀期间,观众轴支$σ$在该电位上的运动暂时变得很快,从而导致一个轨迹场的螺旋状态的局部扩增。在此模型中,张量和标量相关器由向量场采购的量子和标量相关器在动量空间中表现出局部峰,与退出地平线的模式相对应,而$σ$的滚动很快。由于仪表场与可见扇区的重力耦合以及粒子产生的局部性质,该模型可以在CMB尺度上产生可观察到的引力波(GWS),同时满足标量扰动的当前限制。由此产生的GW信号破坏了平等性并表现出相当大的非高斯性,可以通过未来的CMB B模式任务来探讨。根据初始条件和模型参数,观众轴的滚动还可以在干涉仪尺度上观察到大的GW签名,同时尊重原始黑洞限制的标量波动上的边界。在我们的分析中,我们仔细地研究了通过反反应和扰动性考虑出现的模型参数的界限,以表明这些限制是通过在CMB和Sub-CMB量表上生成GW信号的模型的实现来满足这些限制的。

In string theory inspired models of axion-like fields, sub-leading non-perturbative effects, if sufficiently large, can introduce steep cliffs and gentle plateaus onto the underlying scalar potential. During inflation, the motion of a spectator axion $σ$ on this potential becomes temporarily fast, leading to localized amplification of one helicity state of gauge fields. In this model, the tensor and scalar correlators sourced by the vector fields exhibit localized peak(s) in momentum space corresponding to the modes that exit the horizon while the roll of $σ$ is fast. Thanks to the gravitational coupling of gauge fields with the visible sector and the localized nature of particle production, this model can generate observable gravitational waves (GWs) at CMB scales while satisfying the current limits on scalar perturbations. The resulting GW signal breaks parity and exhibit sizeable non-Gaussianity that can be probed by future CMB B-mode missions. Depending on the initial conditions and model parameters, the roll of the spectator axion can also generate an observably large GW signature at interferometer scales while respecting the bounds on the scalar fluctuations from primordial black hole limits. In our analysis, we carefully investigate bounds on the model parameters that arise through back-reaction and perturbativity considerations to show that these limits are satisfied by the implementations of the model that generate GW signals at CMB and sub-CMB scales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源