论文标题

从量子电动力学中重新访问相对论磁性水力动力学

Revisiting relativistic magnetohydrodynamics from quantum electrodynamics

论文作者

Hongo, Masaru, Hattori, Koichi

论文摘要

我们根据$(3+1)$ - 尺寸量子电动力学提供相对论磁流失动力学的统计机械推导;该系统具有磁性的一式对称性。关于一般坐标转换,保护定律和构造关系以明显的协变方式呈现。局部Gibbs集合(或非平衡统计操作员)的方法与热力学功能的路径综合公式相结合,使我们能够获得构成关系的精确形式。将导数扩展应用于确切的公式,我们得出了相对论磁性流体动力学的一阶构型关系。 QED血浆保留奇偶校验和电荷缀合对称性的结果配备了两个电阻率和五个(三个散装和两个剪切)粘度。我们还表明,这些传输系数满足了Onsager的相互关系和一组不平等,表明熵生产率的半积极性与局部热力学第二定律一致。

We provide a statistical mechanical derivation of relativistic magnetohydrodynamics on the basis of the $(3+1)$-dimensional quantum electrodynamics; the system endowed with the magnetic one-form symmetry. The conservation laws and the constitutive relations are presented in a manifestly covariant way with respect to the general coordinate transformation. The method of the local Gibbs ensemble (or nonequilibrium statistical operator) combined with the path-integral formula for the thermodynamic functional enables us to obtain an exact form of the constitutive relations. Applying the derivative expansion to the exact formula, we derive the first-order constitutive relations for the relativistic magnetohydrodynamics. The result for the QED plasma preserving the parity and charge-conjugation symmetries is equipped with two electrical resistivities and five (three bulk and two shear) viscosities. We also show that those transport coefficients satisfy the Onsager's reciprocal relation and a set of inequalities, indicating the semi-positivity of the entropy production rate consistent with the local second law of thermodynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源