论文标题

重力和张量重力数据的快速前进

Rapid forward of gravity and tensor gravity data

论文作者

Cao, Shu-jin

论文摘要

表面重力 /张量重力数据的大规模三维反转是一个非常具有挑战性的数值和实用问题,它是高度物理的内存使用,耗时的计算和高度重力模型的高精度。引入了等效的几何体系结构,以避免计算和保存灵敏度矩阵。通过将三个虚拟网格添加到地球物理模型中,新的等效几何结构并不依赖于重力场的对称特征。提出了一种新的快进方法,基于基于翻译等效技术的基于toeplitz矩阵,toeplitz矩阵通过使用快速傅立叶变换进行了快速矩阵矢量乘法。数值实验表明,本文提出的方法几乎不需要记忆,高效率和高精度。

The large-scale three-dimensional inversion of surface gravity / tensor gravity data is a very challenging numerical and practical problem, which is a highly physical memory usage, time-consuming computation and high precision for large-scale gravity models. Equivalent geometric architecture was introduced to avoid to calculate and to save sensitivity matrix. A new equivalent geometric architecture was not rely on symmetrical characteristic of gravity field by added three virtual grids into geophysical model. A new fast forward method was proposed based translation equivalent technique based toeplitz matrix, which a toeplitz matrix carried out fast matrix-vector multiplication by using the fast Fourier transform. Numerical experiments show that the method proposed in this paper is require little memory, high efficiency and high precision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源