论文标题

严重的热发动机大量重力

Critical Heat Engines in Massive Gravity

论文作者

Yerra, Pavan Kumar, Bhamidipati, Chandrasekhar

论文摘要

在扩展的热力学中,我们研究了效率$η_k$的关键加热发动机,用于球形($ k = 1 $),FLAT($ k = 0 $)和双曲线($ k = -1 $)拓扑的巨大重力($ k = 1 $)。虽然,$η_k$通常是双曲线(球形)拓扑的较高(较低),但我们表明,该顺序可以在球形拓扑的关键热引擎中逆转,效率较高,尤其是顺序:$η_{\ rm -1}^{\ rm -1}^{ 0}^{\ phantom {0}}<η_{\ rm +1}^{\ phantom {+1}} $。此外,对临界孔的近地平线区域的研究表明,除了已知的$ q \ rightarrow \ infty $条件外,还需要基于几何学的拓扑结构的其他大量重力参数,以揭示出具有消失的宇宙学常数的完全脱钩的Rindler时空。

With in the extended thermodynamics, we study the efficiency $η_k$ of critical heat engines for charged black holes in massive gravity for spherical ($k=1$), flat ($k=0$) and hyperbolic ($k=-1$) topologies. Although, $η_k$ is in general higher (lower) for hyperbolic (spherical) topology, we show that this order can be reversed in critical heat engines with efficiency higher for spherical topology, following in particular the order: $ η_{\rm -1}^{\phantom{-1}} < η_{\rm 0}^{\phantom{0}} < η_{\rm +1}^{\phantom{+1}}$. Furthermore, the study of the near horizon region of the critical hole shows that, apart from the known $q\rightarrow \infty $ condition, additional scalings of massive gravity parameters, based on the topology of the geometry are required, to reveal the presence of a fully decoupled Rindler space-time with vanishing cosmological constant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源