论文标题

非参数得分估计器

Nonparametric Score Estimators

论文作者

Zhou, Yuhao, Shi, Jiaxin, Zhu, Jun

论文摘要

从未知分布产生的一组样本中估算分数,即对数密度函数的梯度是推理和学习概率模型的基本任务,涉及涉及灵活但棘手的密度的概率模型。基于Stein的方法或得分匹配的内核估计器已显示出希望,但是它们的理论属性和关系尚未完全理解。我们在正规化非参数回归的框架下提供了这些估计量的统一观点。它使我们能够通过选择不同的假设空间和正规化器来分析现有估计量,并构建具有理想属性的新估计器。为此类估计器提供了统一的收敛分析。最后,我们提出了基于迭代正则化的分数估计器,该估计器享有无卷曲内核和快速收敛的计算益处。

Estimating the score, i.e., the gradient of log density function, from a set of samples generated by an unknown distribution is a fundamental task in inference and learning of probabilistic models that involve flexible yet intractable densities. Kernel estimators based on Stein's methods or score matching have shown promise, however their theoretical properties and relationships have not been fully-understood. We provide a unifying view of these estimators under the framework of regularized nonparametric regression. It allows us to analyse existing estimators and construct new ones with desirable properties by choosing different hypothesis spaces and regularizers. A unified convergence analysis is provided for such estimators. Finally, we propose score estimators based on iterative regularization that enjoy computational benefits from curl-free kernels and fast convergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源