论文标题
大规模生成地图不完整和不准确的数据标签
Map Generation from Large Scale Incomplete and Inaccurate Data Labels
论文作者
论文摘要
精确和全球映射的人类基础设施是一项重要且具有挑战性的任务,在路由,法规合规性监控以及自然灾害响应管理等方面的应用等。在本文中,我们在开发算法管道和分布式计算系统方面取得了进展,可以自动使用高分辨率航空图像来自动化地图创建图。与以前的研究不同,大多数研究使用仅在世界各地的几个城市中可用的数据集,我们使用了公开可用的图像和地图数据,这些图像和地图数据涵盖了连续的美国(CONUS)。我们应对采用不准确和不完整的培训数据的技术挑战,该数据采用了最先进的卷积神经网络体系结构,例如U-Net和Cyclegan,以逐步生成地图,并越来越准确,更完整的人造基础设施(如道路和房屋)。由于将映射任务缩放到Conus需要并行化,因此我们采用了异步分布式随机并行梯度下降训练方案,以几乎线性加速的速度将计算工作负载分配到GPU。
Accurately and globally mapping human infrastructure is an important and challenging task with applications in routing, regulation compliance monitoring, and natural disaster response management etc.. In this paper we present progress in developing an algorithmic pipeline and distributed compute system that automates the process of map creation using high resolution aerial images. Unlike previous studies, most of which use datasets that are available only in a few cities across the world, we utilizes publicly available imagery and map data, both of which cover the contiguous United States (CONUS). We approach the technical challenge of inaccurate and incomplete training data adopting state-of-the-art convolutional neural network architectures such as the U-Net and the CycleGAN to incrementally generate maps with increasingly more accurate and more complete labels of man-made infrastructure such as roads and houses. Since scaling the mapping task to CONUS calls for parallelization, we then adopted an asynchronous distributed stochastic parallel gradient descent training scheme to distribute the computational workload onto a cluster of GPUs with nearly linear speed-up.