论文标题

在分支和界限算法中选择可变选择的强化学习

Reinforcement Learning for Variable Selection in a Branch and Bound Algorithm

论文作者

Etheve, Marc, Alès, Zacharie, Bissuel, Côme, Juan, Olivier, Kedad-Sidhoum, Safia

论文摘要

混合整数线性程序通常通过分支和结合算法解决。最成功的商业求解器效率的关键因素是他们的微调启发式方法。在本文中,我们利用现实世界实例中的模式从头开始学习针对给定问题优化的新分支策略,并将其与商业求解器进行比较。我们提出了FMSTS,这是一种专门为此任务设计的新型增强学习方法。我们方法的强度在于局部价值函数与全球关注度量指标之间的一致性。此外,我们还提供了将已知的RL技术调整到分支和绑定设置的见解,并提供了来自文献启发的新神经网络体系结构。据我们所知,这是第一次使用增强学习来完全优化分支策略。计算实验表明,我们的方法是合适的,并且能够很好地推广到新实例。

Mixed integer linear programs are commonly solved by Branch and Bound algorithms. A key factor of the efficiency of the most successful commercial solvers is their fine-tuned heuristics. In this paper, we leverage patterns in real-world instances to learn from scratch a new branching strategy optimised for a given problem and compare it with a commercial solver. We propose FMSTS, a novel Reinforcement Learning approach specifically designed for this task. The strength of our method lies in the consistency between a local value function and a global metric of interest. In addition, we provide insights for adapting known RL techniques to the Branch and Bound setting, and present a new neural network architecture inspired from the literature. To our knowledge, it is the first time Reinforcement Learning has been used to fully optimise the branching strategy. Computational experiments show that our method is appropriate and able to generalise well to new instances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源