论文标题

使用潜在的Dirichlet分配在湍流通道流中的相干结构识别

Coherent structure identification in turbulent channel flow using Latent Dirichlet Allocation

论文作者

Frihat, Mohamed, Podvin, Bérengère, Mathelin, Lionel, Fraigneau, Yann, Yvon, François

论文摘要

相干结构的识别是描述和建模壁结合流中湍流产生机制的重要步骤。为此,我们提出了一种基于潜在Dirichlet分配(LDA)的聚类方法,这是一种用于离散数据集合的生成概率模型。该方法用于在中等雷诺数的湍流通道流动中的瞬时雷诺的结构识别。我们表明,该模型可用于具有复杂性的现场重建,可以将其与适当的正交分解(POD)进行比较。它也可以用于生成合成字段,该统计数据模拟了原始数据库的统计信息。这些发现突出了LDA在数据分析,压缩和生成中的潜力。

Identification of coherent structures is an essential step to describe and model turbulence generation mechanisms in wall-bounded flows. To this end we present a clustering method based on Latent Dirichlet Allocation (LDA), a generative probabilistic model for collections of discrete data. The method is applied for structure identification to the instantaneous Reynolds stress in turbulent channel flow at moderate Reynolds number R τ = 590. LDA computes a robust flow description in terms of a hierarchy of vertically connected structure fragments, the characteristics of which scale with the wall distance, in agreement with the wall-attached eddy hypothesis of Townsend (1961). We show that the model can be used for field reconstruction with a complexity that can be compared with that of Proper Orthogonal Decomposition (POD). It can also be used to generate synthetic fields, the statistics of which mimic those of the original database. These findings highlight the potential of LDA for data analysis, compression and generation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源