论文标题

近似动态导致更最佳的控制:有效的精确导数

Approximate Dynamics Lead to More Optimal Control: Efficient Exact Derivatives

论文作者

Jensen, Jesper Hasseriis Mohr, Møller, Frederik Skovbo, Sørensen, Jens Jakob, Sherson, Jacob Friis

论文摘要

准确的衍生物对于在量子优化景观中有效地局部穿越和收敛至关重要。通过为单位控制任务得出分析精确的控制衍生物(梯度和Hessian),我们在这里表明,满足此准确性要求的计算可行性取决于传播方案和问题表示的选择。即使精确的繁殖足够便宜,也许令人惊讶的是,优化(适当)近似传播器的效率要高得多:动态中的近似值被交易,以降低确切的导数计算中的显着复杂性。重要的是,超过最初的分析考虑,只有直接应用于现实的系统,只需要明确需要标准的数值技术。对于增加希尔伯特空间维度的两个具体问题,这些结果得到了数值验证。最佳方案获得了机器精度的单位保真度,而其他方案的结果则通过计算时间中的数量级始终如一,在最坏情况下,可实现的忠诚度有10个数量级。由于这些差距不断随系统的大小和复杂性而不断增加,因此该方法可以在数值上有效地优化非常高维的动态,例如在多体环境中,将在高保真制度中运作,该制度将分别发布。

Accurate derivatives are important for efficiently locally traversing and converging in quantum optimization landscapes. By deriving analytically exact control derivatives (gradient and Hessian) for unitary control tasks, we show here that the computational feasibility of meeting this accuracy requirement depends on the choice of propagation scheme and problem representation. Even when exact propagation is sufficiently cheap it is, perhaps surprisingly, much more efficient to optimize the (appropriately) approximate propagators: approximations in the dynamics are traded off for significant complexity reductions in the exact derivative calculations. Importantly, past the initial analytical considerations, only standard numerical techniques are explicitly required with straightforward application to realistic systems. These results are numerically verified for two concrete problems of increasing Hilbert space dimensionality. The best schemes obtain unit fidelity to machine precision whereas the results for other schemes are separated consistently by orders of magnitude in computation time and in worst case 10 orders of magnitude in achievable fidelity. Since these gaps continually increase with system size and complexity, this methodology allows numerically efficient optimization of very high-dimensional dynamics, e.g. in many-body contexts, operating in the high-fidelity regime which will be published separately.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源