论文标题

使用光谱工程光子对的量子光相干断层扫描中的干扰效应

Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs

论文作者

Graciano, Pablo Yepiz, Martinez, Ali Michel Angulo, Lopez-Mago, Dorilian, Castro-Olvera, Gustavo, Rosete-Aguilar, Martha, Garduño-Mejia, Jesus, Alarcon, Roberto Ramirez, Ramirez, Hector Cruz, U'Ren, Alfred B.

论文摘要

光学固定断层扫描(OCT)是一种采用光来测量半透明剂的内部结构的技术,例如生物学,样品。它基于低旋光灯的干扰模式。相反,量子-OCT(QOCT)采用了纠缠光子对的相关性能,例如,由自发参数下调(SPDC)生成。通常的QOCT方案使用具有严格光谱抗相关的联合光谱振幅为特征的光子对。已经表明,与其经典的对应物相比,QOCT提供了分辨率增强和分散取消。在本文中,我们重新审视了QoCT的理论并扩展了理论模型,以包括具有任意光谱相关性的光子对。我们提出了补充理论的实验结果,并解释了以干扰模式出现的物理基础。在我们的实验中,我们利用泵进行SPDC工艺,范围从连续波到飞秒制度的脉冲,并表明每对层出现的互相关干扰效应可能会直接被抑制,以抑制足够大的泵带宽。我们的结果提供了可以指导QOCT实施的见解和策略。

Optical-coherence tomography (OCT) is a technique that employs light in order to measure the internal structure of semi-transparent, e.g. biological, samples. It is based on the interference pattern of low-coherence light. Quantum-OCT (QOCT), instead, employs the correlation properties of entangled photon pairs, for example, generated by the process of spontaneous parametric downconversion (SPDC). The usual QOCT scheme uses photon pairs characterised by a joint-spectral amplitude with strict spectral anti-correlations. It has been shown that, in contrast with its classical counterpart, QOCT provides resolution enhancement and dispersion cancellation. In this paper, we revisit the theory of QOCT and extend the theoretical model so as to include photon pairs with arbitrary spectral correlations. We present experimental results that complement the theory and explain the physical underpinnings appearing in the interference pattern. In our experiment, we utilize a pump for the SPDC process ranging from continuous wave to pulsed in the femtosecond regime, and show that cross-correlation interference effects appearing for each pair of layers may be directly suppressed for a sufficiently large pump bandwidth. Our results provide insights and strategies that could guide practical implementations of QOCT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源