论文标题
刚性c*-tensor类别的实现为gjs c*-ergebras上的双模型
Realizations of Rigid C*-Tensor Categories as Bimodules over GJS C*-Algebras
论文作者
论文摘要
考虑到一个任意生成的刚性C*-Tensor类别,我们在有限,可分离的,可分离的,Unital的C*-ergebra的子类别上构建了一个完全信仰的双重型强函数,并在有限生成的投影双模型的子类别上构建了一个具有独特痕迹的型号。涉及的C*代数是使用Arxiv中引入的GJS构造构建的:0911.4728,并在Arxiv中进一步研究:1208.5505和ARXIV:1401.2486。在这类Hilbert C*Bimodules之外,我们在插值的自由组因子上构建了一个完全信仰的双重强型单体函数。这两个函子的复合物恢复了arXiv中构建的函子:1208.5505
Given an arbitrary countably generated rigid C*-tensor category, we construct a fully-faithful bi-involutive strong monoidal functor onto a subcategory of finitely generated projective bimodules over a simple, exact, separable, unital C*-algebra with unique trace. The C*-algebras involved are built from the category using the GJS-construction introduced in arXiv:0911.4728 and further studied in arXiv:1208.5505 and arXiv:1401.2486. Out of this category of Hilbert C*-bimodules, we construct a fully-faithful bi-involutive strong monoidal functor into the category of bi-finite spherical bimodules over an interpolated free group factor. The composite of these two functors recovers the functor constructed in arXiv:1208.5505