论文标题

利用机器学习以有效预测复杂环境中的多维光谱

Exploiting machine learning to efficiently predict multidimensional optical spectra in complex environments

论文作者

Chen, Michael S., Zuehlsdorff, Tim J., Morawietz, Tobias, Isborn, Christine M., Markland, Thomas E.

论文摘要

复杂环境中发色团的激发状态动力学决定了一系列重要的生物学和能量捕获过程。时间分辨,多维光谱学为研究这些过程提供了关键工具。尽管理论具有根据电子和原子动力学来解码这些光谱的潜力,但是对大量激发状态的电子结构计算的需求严重限制了凝结阶段发色团多维光谱的第一原理预测。在这里,我们利用发色团激发的局部性开发机器学习模型,以预测复杂环境中发色团的激发状态能隙,以有效构建线性和多维光谱。通过分析这些模型的性能,这些模型跨越了物理近似的层次结构,这些模型跨越了一系列发色团环境的相互作用强度,我们为构建ML模型提供了策略,这些模型大大加速了第一原理的多维光谱。

The excited state dynamics of chromophores in complex environments determine a range of vital biological and energy capture processes. Time-resolved, multidimensional optical spectroscopies provide a key tool to investigate these processes. Although theory has the potential to decode these spectra in terms of the electronic and atomistic dynamics, the need for large numbers of excited state electronic structure calculations severely limits first principles predictions of multidimensional optical spectra for chromophores in the condensed phase. Here, we leverage the locality of chromophore excitations to develop machine learning models to predict the excited state energy gap of chromophores in complex environments for efficiently constructing linear and multidimensional optical spectra. By analyzing the performance of these models, which span a hierarchy of physical approximations, across a range of chromophore-environment interaction strengths, we provide strategies for the construction of ML models that greatly accelerate the calculation of multidimensional optical spectra from first principles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源