论文标题

增强,Annuli和Alexander多项式

Augmentations, annuli, and Alexander polynomials

论文作者

Diogo, Luís, Ekholm, Tobias

论文摘要

打结的增强品种是基因座,在结的3维系数空间中,代数在该构图中接纳了一个Unital链映射到副本。我们解释了如何以增强品种来表达结的亚历山大多项式:它是两个部分衍生物的比率的指数。该表达源自亚历山大多项式的描述,作为浮雕和霍明型环的数量,在欧几里得人数的cotangent束3个空间之间,在拉格朗日之间延伸,与零部分的拓扑结合了零部分的拓扑结构,并源于零体的范围,以及一个正面的unluli punituri sane and puncturi的边界。

The augmentation variety of a knot is the locus, in the 3-dimensional coefficient space of the knot contact homology dg-algebra, where the algebra admits a unital chain map to the complex numbers. We explain how to express the Alexander polynomial of a knot in terms of the augmentation variety: it is the exponential of the integral of a ratio of two partial derivatives. The expression is derived from a description of the Alexander polynomial as a count of Floer strips and holomorphic annuli, in the cotangent bundle of Euclidean 3-space, stretching between a Lagrangian with the topology of the knot complement and the zero-section, and from a description of the boundary of the moduli space of such annuli with one positive puncture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源