论文标题
强耦合电子 - 光子液体的传输特性
Transport properties of strongly coupled electron-phonon liquids
论文作者
论文摘要
在这项工作中,我们考虑了耦合的电子 - 音波流体的流体动力行为,重点是在强声子阻力的条件下进行电子传输。当由于例如,例如,由于语音均衡的速率,例如Umklapp散射比正常电子碰撞的速率要慢得多。然后,声子和电子形成一个耦合到平衡状态的耦合,其中保守了电子 - 光液的总准摩孔。关节流速度作为集体流体动力变量出现。我们从潜在的微观动力学理论中得出了这种流体的运动方程,并阐明了其有效的粘度和导热率。特别是,我们得出了分布函数任意谐波的衰减时间,并在费米表面揭示了其相应的超排除松弛。我们进一步考虑了该理论在与实验有关的Hall-Bar和Corbino磁盘几何形状中的磁通特性中的几种应用。在我们的分析中,我们允许一般的边界条件覆盖从无滑动到无压力流的交叉状况。我们的方法还涵盖了在古尔茨效应条件下从斯托克斯到欧姆制度的跨界。此外,我们考虑表面阻抗和非平衡噪声的频率依赖性。对于后者,我们注意到,在扩散状态下,一种应用于Eliashberg形式的电子 - Phonon碰撞积分的Fokker-Planck近似,将其减少到具有汉堡非线性的差分运算符。结果,非平衡分布函数在能量域中具有冲击波结构。研究了这种行为对噪声的Fano因子的结果。总之,我们在狄拉克和Weyl半学中最近的电子 - 音波拖动测量值的背景下讨论了结果的连接和局限性。
In this work we consider the hydrodynamic behavior of a coupled electron-phonon fluid, focusing on electronic transport under the conditions of strong phonon drag. This regime occurs when the rate of phonon equilibration due to e.g. umklapp scattering is much slower than the rate of normal electron-phonon collisions. Then phonons and electrons form a coupled out-of-equilibrium state where the total quasi-momentum of the electron-phonon fluid is conserved. A joint flow-velocity emerges as a collective hydrodynamic variable. We derive the equation of motion for this fluid from the underlying microscopic kinetic theory and elucidate its effective viscosity and thermal conductivity. In particular, we derive decay times of arbitrary harmonics of the distribution function and reveal its corresponding super-diffusive relaxation on the Fermi surface. We further consider several applications of this theory to magneto-transport properties in the Hall-bar and Corbino-disk geometries, relevant to experiments. In our analysis we allow for general boundary conditions that cover the crossover from no-slip to no-stress flows. Our approach also covers a crossover from the Stokes to the Ohmic regime under the conditions of the Gurzhi effect. In addition, we consider the frequency dependence of the surface impedance and non-equilibrium noise. For the latter, we notice that in the diffusive regime, a Fokker-Planck approximation, applied to the electron-phonon collision integral in the Eliashberg form, reduces it to a differential operator with Burgers nonlinearity. As a result, the non-equilibrium distribution function has a shock-wave structure in the energy domain. The consequence of this behavior for the Fano factor of the noise is investigated. In conclusion we discuss connections and limitations of our results in the context of recent electron-phonon drag measurements in Dirac and Weyl semimetals.