论文标题
Bifeo的静电和应变工程$ _3 $薄膜在形态相边界处
Combined electrostatic and strain engineering of BiFeO$_3$ thin films at the morphotropic phase boundary
论文作者
论文摘要
多效Bifeo $ _3 $(bfo)具有丰富的相图,可以以薄膜形式对其性质进行应变调整。特别是,在较大的压缩应变下,具有巨大极化的超近后(T)相位在更常见的菱形(R)结构上稳定。为了利用这种亚稳态BFO相在设备应用中的功能,必须了解纳米级异质结构插入时的铁电相演变。在这里,我们探讨了使用原位光学的第二次谐波生成在薄膜生长期间,在压缩的BFO中,在压缩的BFO中靠近形态相边界的铁电相的出现。我们发现,在理想t相的生长温度下,外延膜形成,极化层没有临界厚度。 T-like和R样单封型相的特征仅在样品冷却时出现。此外,在电容器样金属|铁电|金属异质结构的生长过程中,高温t相中,单域极化的稳健性。在这里,t相的四方降低,而不是域的形成,可降低静电能。在这种较低的四方,密度功能的计算和扫描透射电子显微镜指向新型亚稳态R样的单斜结构结构在将异质结构冷却至室温时的稳定。因此,我们的结果表明,BFO异质结构中应变和静电相稳定的组合产生了一个探索铁电相和实现超薄铁电器设备的突出平台。
Multiferroic BiFeO$_3$ (BFO) possesses a rich phase diagram that allows strain tuning of its properties in thin-film form. In particular, at large compressive strain, a supertetragonal (T) phase with giant polarization is stabilized over the more common rhombohedral (R) structure. To utilize the functionality of such metastable BFO phases in device applications, it is essential to understand the ferroelectric phase evolution upon insertion in nanoscale heterostructures. Here, we explore the emergence of ferroelectric phases close to the morphotropic phase boundary in compressively strained BFO during thin-film growth using in-situ optical second harmonic generation. We find that the epitaxial films form at the growth temperature in the ideal T phase without critical thickness for the polarization. Signatures of T-like and R-like monoclinically distorted phases only appear upon sample cooling. We furthermore demonstrate a robustness of single-domain polarization in the high-temperature T phase during the growth of capacitor-like metal|ferroelectric|metal heterostructures. Here, a reduction in tetragonality of the T phase, rather than domain formation, lowers the electrostatic energy. At this lower tetragonality, density-functional calculations and scanning transmission electron microscopy point to the stabilization of a new metastable R-like monoclinic structure upon cooling the heterostructure down to room temperature. Our results thus show that the combination of strain and electrostatic phase stabilization in BFO heterostructures yields a prominent platform for exploring ferroelectric phases and realizing ultrathin ferroelectric devices.