论文标题

使用卷积神经网络从光度法时间序列数据中数据驱动的恒星特性推导

Data-driven derivation of stellar properties from photometric time series data using convolutional neural networks

论文作者

Blancato, Kirsten, Ness, Melissa, Huber, Daniel, Lu, Yuxi, Angus, Ruth

论文摘要

恒星变异性是由许多依赖基本恒星特性的内部物理过程驱动的。这些特性是我们将恒星观测与恒星物理学和解的桥梁,以及在星系形成背景下理解恒星种群的分布。随着时间的推移,许多正在进行的和即将到来的任务正在绘制恒星的亮度波动,其中编码有关物理过程的信息,例如旋转期,进化状态(例如有效温度和表面重力)和质量(通过小星言参数)。在这里,我们探讨了如何仅使用光度时间序列数据来预测不同进化状态的这些恒星特性。为此,我们实施了一个卷积神经网络,并且通过数据驱动的建模,我们可以预测各种基线和节奏的光曲线的出色特性。根据\ textit {kepler}数据的单个季度,我们恢复了恒星特性,包括红色巨星的表面重力(不确定性为$ \ lyssim $ 0.06 dex)和主要序列星的旋转期(不确定性的不确定性为$ \ lyssim $ 5.2天,并从$ 5.2天,以及$ 5.2天,$ \ $ \ $ \ $ \ 50天)。将\ textit {kepler}数据缩短到27天的苔丝基线,我们恢复了精确度的降低,$ \ sim $ 0.07 dex for log $ g $和$ \ sim $ \ sim $ \ sim $ \ sim $ \ sim $ \ sim $ 5.5天,从$ p _ {\ rm rot} $,不符合$ \ $ \ \ \ $ \ $ \ fress $ \ fromiase $ \ frmiase v。我们的灵活数据驱动方法利用数据的完整信息内容,需要最少的功能工程,并且可以推广到其他调查和数据集。这有可能在当前和将来的调查中为数百万颗恒星提供出色的财产估计。

Stellar variability is driven by a multitude of internal physical processes that depend on fundamental stellar properties. These properties are our bridge to reconciling stellar observations with stellar physics, and for understanding the distribution of stellar populations within the context of galaxy formation. Numerous ongoing and upcoming missions are charting brightness fluctuations of stars over time, which encode information about physical processes such as rotation period, evolutionary state (such as effective temperature and surface gravity), and mass (via asteroseismic parameters). Here, we explore how well we can predict these stellar properties, across different evolutionary states, using only photometric time series data. To do this, we implement a convolutional neural network, and with data-driven modeling we predict stellar properties from light curves of various baselines and cadences. Based on a single quarter of \textit{Kepler} data, we recover stellar properties, including surface gravity for red giant stars (with an uncertainty of $\lesssim$ 0.06 dex), and rotation period for main sequence stars (with an uncertainty of $\lesssim$ 5.2 days, and unbiased from $\approx$5 to 40 days). Shortening the \textit{Kepler} data to a 27-day TESS-like baseline, we recover stellar properties with a small decrease in precision, $\sim$0.07 dex for log $g$ and $\sim$5.5 days for $P_{\rm rot}$, unbiased from $\approx$5 to 35 days. Our flexible data-driven approach leverages the full information content of the data, requires minimal feature engineering, and can be generalized to other surveys and datasets. This has the potential to provide stellar property estimates for many millions of stars in current and future surveys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源