论文标题
普朗克量表的等价原理,局部惯性框架中的QG和时空的零点长度
Principle of Equivalence at Planck scales, QG in locally inertial frames and the zero-point-length of spacetime
论文作者
论文摘要
等效原理使经典重力在局部惯性框架中消失。等效原理在局部惯性框架中扮演量子引力效应方面有什么作用?我在这里从特定的角度解决这个问题。在接近但比普朗克长度大的介观量表上,人们可以用有效的几何形状来描述量子时空和物质。这种有效的量子几何形状的关键特征是存在零点长度。当我们从量子几何形状到量子物质时,零点长度将以特定方式在物质场中引入校正。另一方面,人们不能忽略介质量表上物质领域的自我实现,这也将修改传播器的形式。一致性要求,这两个修改(来自两个不同的方向)是相同的。我表明这种非平凡需求实际上得到了满足。令人惊讶的是,在子倾斜量表上运行的等效原理可确保这种一致性以微妙的方式。
Principle of Equivalence makes effects of classical gravity vanish in local inertial frames. What role does the Principle of Equivalence play as regards quantum gravitational effects in the local inertial frames? I address this question here from a specific perspective. At mesoscopic scales close to, but somewhat larger than, Planck length one could describe quantum spacetime and matter in terms of an effective geometry. The key feature of such an effective quantum geometry is the existence of a zero-point-length. When we proceed from quantum geometry to quantum matter, the zero-point-length will introduce corrections in the propagator for matter fields in a specific manner. On the other hand, one cannot ignore the self-gravity of matter fields at the mesoscopic scales and this will also modify the form of the propagator. Consistency demands that, these two modifications - coming from two different directions - are the same. I show that this non-trivial demand is actually satisfied. Surprisingly, the Principle of Equivalence, operating at sub-Planck scales, ensures this consistency in a subtle manner.