论文标题

在拓扑多体系统中保护平等时间对称性:非静态旋转代码和分布型模型

Protection of parity-time symmetry in topological many-body systems: non-Hermitian toric code and fracton models

论文作者

Shackleton, Henry, Scheurer, Mathias S.

论文摘要

在$ \ Mathcal {p} \ Mathcal {t} $ - 具有非弱势扰动的对称量子系统中,最重要的问题之一是特征值是否保持真实,还是$ \ nathcal {p} \ Mathcal {p} \ Mathcal {t} $ - symmetry在eigeNval中遇到了agreatie。具有拓扑顺序的系统的退化地面国家空间提供了一组特别有趣的本征态。在本文中,我们提出了简单的标准,以保证保护$ \ Mathcal {p} \ Mathcal {t} $ - 对称性,因此,在拓扑多体系统中是特征值的现实。我们以几何形式和代数形式制定了这些标准,并使用感谢您的代码和几种不同的分裂模型作为示例来证明它们。我们的分析表明,在这些模型中,$ \ MATHCAL {P} \ MATHCAL {T} $ - 对称性与一类非常大的非热扰动相对强大;由于分形式模型的情况呈指数成倍,这尤其引人注目。

In the study of $\mathcal{P}\mathcal{T}$-symmetric quantum systems with non-Hermitian perturbations, one of the most important questions is whether eigenvalues stay real or whether $\mathcal{P}\mathcal{T}$-symmetry is spontaneously broken when eigenvalues meet. A particularly interesting set of eigenstates is provided by the degenerate ground-state subspace of systems with topological order. In this paper, we present simple criteria that guarantee the protection of $\mathcal{P}\mathcal{T}$-symmetry and, thus, the reality of the eigenvalues in topological many-body systems. We formulate these criteria in both geometric and algebraic form, and demonstrate them using the toric code and several different fracton models as examples. Our analysis reveals that $\mathcal{P}\mathcal{T}$-symmetry is robust against a remarkably large class of non-Hermitian perturbations in these models; this is particularly striking in the case of fracton models due to the exponentially large number of degenerate states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源