论文标题
Bykov吸引子附近的圆环破裂:案例研究
Torus-breakdown near a Bykov attractor: a case study
论文作者
论文摘要
在表现出可以在分析上证明的复杂动力学的矢量场的文献中,很少有明确的例子。本文报告了对矢量领域的显式两参数家族进行的分析实验,该家族展开了一个吸引人的杂斜网络,将两个鞍形块与$(\ Mathbb {so}(so}(2)\ oplus \ oplus \ mathbb {z} {z} _2)_2)$ - symmetry联系起来。向量字段是$ \ mathbb {s}^3 $的限制,$ \ mathbb {r}^4 $中的多项式向量字段。我们研究了由于破坏对称性而引起的全球分叉,并通过一种称为“圆环破裂理论”的现象检测到奇怪的吸引子。我们解释了如何通过遵循鞍座不变流形的变化来摧毁一个吸引的圆环。尽管使用理论工具和计算机模拟的组合,我们对相应的分叉图和动态变化的基础机制的完全理解仍然无法触及,但我们发现了一些分析的对称家庭的复杂模式。这也暗示了获得旋转马蹄铁的途径。此外,我们尝试阐明Arnold楔形涉及的一些分叉。
There are few explicit examples in the literature of vector fields exhibiting complex dynamics that may be proved analytically. This paper reports numerical experiments performed for an explicit two-parameter family of vector fields unfolding an attracting heteroclinic network, linking two saddle-foci with $ (\mathbb{SO}(2) \oplus \mathbb{Z}_2)$-symmetry. The vector field is the restriction to $\mathbb{S}^3$ of a polynomial vector field in $\mathbb{R}^4$. We investigate global bifurcations due to symmetry-breaking and we detect strange attractors via a phenomenon called Torus-Breakdown theory. We explain how an attracting torus gets destroyed by following the changes in the invariant manifolds of the saddle-foci. Although a complete understanding of the corresponding bifurcation diagram and the mechanisms underlying the dynamical changes is still out of reach, using a combination of theoretical tools and computer simulations, we have uncovered some complex patterns for the symmetric family under analysis. This also suggests a route to obtain rotational horseshoes; additionally, we give an attempt to elucidate some of the bifurcations involved in an Arnold wedge.