论文标题
一个无限编织的汤普森团体的新家庭
A new family of infinitely braided Thompson's groups
论文作者
论文摘要
我们提出了使用递归编织物的DeHornoy-Brin编织的Thompson组$ BV_2 $的概括。对于所有$ n \ geq 2,r \ geq 1 $和$ h \ leq \ leq \ mathcal {b} _n $,我们的新组用$ bv_ {n,r}(h)$表示,其中$ \ mathcal {b} _n $是$ n $ strands的编织组。我们提供了一种新的方法,可以使用链图处理编织的汤普森组。我们表明,如果有限地生成$ h $,则有限地生成$ bv_ {n,r}(h)$。
We present a generalization of the Dehornoy-Brin braided Thompson group $BV_2$ that uses recursive braids. Our new groups are denoted by $BV_{n,r}(H)$, for all $n\geq 2,r\geq 1$ and $H \leq \mathcal{B}_n$, where $\mathcal{B}_n$ is the braid group on $n$ strands. We give a new approach to deal with braided Thompson groups by using strand diagrams. We show that $BV_{n,r}(H)$ is finitely generated if $H$ is finitely generated.