论文标题

使用机器学习和成对相互作用扩展点粒子(PIEP)近似值,在多相流的Euler-Lagrange模拟中迈向粒子分辨的精度

Towards Particle-Resolved Accuracy in Euler-Lagrange Simulations of Multiphase Flow Using Machine Learning and Pairwise Interaction Extended Point-particle (PIEP) Approximation

论文作者

Balachandar, S., Moore, W. C., Akiki, G., Liu, K.

论文摘要

这项研究介绍了两种不同的机器学习方法,用于在含有粒子的多相流中对颗粒上的流体动力进行建模。在模型的开发中,使用了八个粒子雷诺数组合($ re $)和体积分数($ ϕ $)的随机固定粒子上的流动阵列的粒子分辨直接数值模拟(PR-DN)的结果。第一种方法遵循两个步骤。在第一个流动预测步骤中,使用线性回归获得了粒子引起的扰动流作为轴对称超孔唤醒。在第二个力预测步骤中,使用力表达的广义传真形式,根据其所有邻居诱导的扰动流量评估粒子上的力。在第二种方法中,使用PR-DNS模拟的所有粒子的力数据用于开发人工神经网络(ANN)模型,以直接预测粒子上的力。由于对PR-DNS模拟中完全分辨的粒子数量的不可避免的限制,使用ANN模型的直接力预测倾向于过度拟合数据,并且在预测测试数据中的性能很差。相反,由于PR-DNS模拟中使用的数百万个网格点,因此可以准确的流动预测,然后可以准确预测粒子力。多相物理学和机器学习的这种杂交尤其重要,因为它融合了每种的强度,并且不能仅通过物理学或机器学习来开发所得的成对相互作用扩展点粒子(PIEP)模型。

This study presents two different machine learning approaches for the modeling of hydrodynamic force on particles in a particle-laden multiphase flow. Results from particle-resolved direct numerical simulations (PR-DNS) of flow over a random array of stationary particles for eight combinations of particle Reynolds number ($Re$) and volume fraction ($ϕ$) are used in the development of the models. The first approach follows a two step process. In the first flow prediction step, the perturbation flow due to a particle is obtained as an axisymmetric superposable wake using linear regression. In the second force prediction step, the force on a particle is evaluated in terms of the perturbation flow induced by all its neighbors using the generalized Faxén form of the force expression. In the second approach, the force data on all the particles from the PR-DNS simulations is used to develop an artificial neural network (ANN) model for direct prediction of force on a particle. Due to the unavoidable limitation on the number of fully resolved particles in the PR-DNS simulations, direct force prediction with the ANN model tends to over-fit the data and performs poorly in the prediction of test data. In contrast, due to the millions of grid points used in the PR-DNS simulations, accurate flow prediction is possible, which then allows accurate prediction of particle force. This hybridization of multiphase physics and machine learning is particularly important, since it blends the strength of each, and the resulting pairwise interaction extended point-particle (PIEP) model cannot be developed by either physics or machine learning alone.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源