论文标题
新类的超环球运营商
New classes of hypercyclic Toeplitz operators
论文作者
论文摘要
我们在Hardy Space $ H^2(\ Mathbb {D})$中研究Toeplitz运营商的超环定性,并带有$ r(\ overline {z}) +ϕ(z)$的符号,其中$ r $是$ r $是一个有理函数,$ dection $ $ ϕ \ in h^\ infty(\ infty(\ infty)(\ m atty(\ mathbbbbbbbbbbbbb {d} d}))$。我们将这个问题与某些用于分析toeplitz运算符的功能家族的循环性联系起来,并根据B. Solomyak的深层结果提供了足够的过度循环条件。
We study hypercyclicity of Toeplitz operators in the Hardy space $H^2(\mathbb{D})$ with symbols of the form $R(\overline{z}) +ϕ(z)$, where $R$ is a rational function and $ϕ\in H^\infty(\mathbb{D})$. We relate this problem to cyclicity of certain families of functions for analytic Toeplitz operators and give new sufficient conditions for hypercyclicity based on deep results of B. Solomyak.