论文标题

新类的超环球运营商

New classes of hypercyclic Toeplitz operators

论文作者

Abakumov, Evgeny, Baranov, Anton, Charpentier, Stéphane, Lishanskii, Andrei

论文摘要

我们在Hardy Space $ H^2(\ Mathbb {D})$中研究Toeplitz运营商的超环定性,并带有$ r(\ overline {z}) +ϕ(z)$的符号,其中$ r $是$ r $是一个有理函数,$ dection $ $ ϕ \ in h^\ infty(\ infty(\ infty)(\ m atty(\ mathbbbbbbbbbbbbb {d} d}))$。我们将这个问题与某些用于分析toeplitz运算符的功能家族的循环性联系起来,并根据B. Solomyak的深层结果提供了足够的过度循环条件。

We study hypercyclicity of Toeplitz operators in the Hardy space $H^2(\mathbb{D})$ with symbols of the form $R(\overline{z}) +ϕ(z)$, where $R$ is a rational function and $ϕ\in H^\infty(\mathbb{D})$. We relate this problem to cyclicity of certain families of functions for analytic Toeplitz operators and give new sufficient conditions for hypercyclicity based on deep results of B. Solomyak.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源